"오일러-가우스 초기하함수2F1"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 26개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
* [[오일러-가우스 초기하함수2F1|오일러-가우스 초기하함수]]<br>
+
* 초기하급수:<math>\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1</math>
 +
여기서 <math>(a)_n=a(a+1)(a+2)...(a+n-1)</math>에 대해서는 [[포흐하머 (Pochhammer) 기호]] 항목 참조
 +
*  적분표현:<math>\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt</math>
 +
*  초기하급수의 해석적확장을 통해 얻어진 함수를 초기하함수라 함
 +
*  오일러, 가우스, 쿰머, 리만,슈워츠 등의 연구
  
 
+
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">개요</h5>
+
==초기하급수로 표현되는 함수의 예==
  
* 초기하급수<br><math>\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1</math><br> 여기서 <math>(a)_n=a(a+1)(a+2)...(a+n-1)</math>에 대해서는 [[Pochhammer 기호와 캐츠(Kac) 기호]] 항목 참조<br>
+
* 많은 special function 은 초기하함수의 파라메터를 변화시켜 얻어짐
*  적분표현<br><math>\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt</math><br>
+
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]:<math>K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math>
*  초기하급수의 해석적확장을 통해 얻어진 함수를 초기하함수라 함<br>
+
* [[제2종타원적분 E (complete elliptic integral of the second kind)]]:<math>E(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},-\frac{1}{2};1;k^2)</math>
*  오일러, 가우스, 쿰머, 리만,슈워츠 등의 연구<br>
 
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">초기하급수로 표현되는 함수의 예</h5>
+
==초기하 미분방정식==
  
* 많은 special function 은 초기하함수의 파라메터를 변화시켜 얻어짐<br>
+
* <math>w(z)=\,_2F_1(a,b;c;z)</math> 는 다음 피카드-Fuchs 형태의 미분방정식의 해가 된다
* [[타원적분]]<br><math>K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math><br><math>E(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},-\frac{1}{2};1;k^2)</math><br>
+
:<math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math>
 +
*  이 미분방정식을 [[초기하 미분방정식(Hypergeometric differential equations)]] 이라 부른다
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">피카드-Fuchs 미분방정식</h5>
+
  
* <math>\,_2F_1(a,b;c;z)</math> 는 다음 미분방정식의 해가 된다<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br>
+
==오일러의 변환 공식==
* [[초기하 미분방정식(Hypergeometric differential equations)]] 참조<br>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">오일러의 항등식</h5>
 
  
 
<math>_2F_1 (a,b;c;z) =  (1-z)^{-a} {}_2F_1 (a, c-b;c ; \frac{z}{z-1})</math>
 
<math>_2F_1 (a,b;c;z) =  (1-z)^{-a} {}_2F_1 (a, c-b;c ; \frac{z}{z-1})</math>
44번째 줄: 41번째 줄:
 
<math>_2F_1 (a,b;c;z) =  (1-z)^{c-a-b}{}_2F_1 (c-a, c-b;c ; z)</math>
 
<math>_2F_1 (a,b;c;z) =  (1-z)^{c-a-b}{}_2F_1 (c-a, c-b;c ; z)</math>
  
 
+
 
 
(증명)
 
  
 +
;증명
 
다음 적분표현을 활용
 
다음 적분표현을 활용
  
 
<math>\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt</math>
 
<math>\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt</math>
  
위의 우변에서 <math>t\to 1-t</math>, <math>t\to \frac{t}{1-z-tz}</math>, <math>t\to \frac{1-t}{1-tz}</math>의 변환을 이용하면 항등식이 얻어진다. ■
+
위의 우변에서 <math>t\to 1-t</math>, <math>t\to \frac{t}{1-z-tz}</math>, <math>t\to \frac{1-t}{1-tz}</math>의 변환을 이용하면 항등식이 얻어진다. ■
 
 
 
 
 
 
*  쿰머의 [[초기하 미분방정식(Hypergeometric differential equations)]]에 대한 24개의 해를 표현하는데 사용됨<br>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">contiguous 관계</h5>
 
 
 
* [[초기하함수 2F1의 contiguous 관계]]<br>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">타원적분과 초기하급수</h5>
 
 
 
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]<br><math>K(k) = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n(\frac{1}{2})_n}{n!(1)_n}k^{2n} = \frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math> [[제1종타원적분 K (complete elliptic integral of the first kind)|]]<br>
 
 
 
(증명)
 
 
 
<math>K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}} = \int_0^{\frac{\pi}{2}}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n}{n!} k^{2n}\sin^{2n}\theta{d\theta}  </math>
 
 
 
<math>\int_0^{\frac{\pi}{2}}\sin^{2n}\theta{d\theta}=\frac{\pi}{2}\frac{(\frac{1}{2})_n}{(1)_n}</math> ([[#|감마함수]]) 이므로
 
 
 
<math>K(k) = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n(\frac{1}{2})_n}{n!(1)_n}k^{2n} = \frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">모듈라 함수와의 관계</h5>
 
 
 
* [[라마누잔과 파이]]<br>
 
 
 
 
 
 
 
'''[BB1998]'''[http://www.amazon.com/PI-AGM-Analytic-Computational-Complexity/dp/047131515X Pi and the AGM]
 
  
* Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998)
+
* http://mathworld.wolfram.com/EulersHypergeometricTransformations.html
 +
*  쿰머의 [[초기하 미분방정식(Hypergeometric differential equations)]]에 대한 24개의 해를 표현하는데 사용됨
  
179,180p
+
  
 
+
  
'''[Nes2002] 159p'''
+
==contiguous 관계==
  
 
+
* [[초기하함수 2F1의 contiguous 관계]]
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">슈워츠 s-함수</h5>
+
  
* [[슈바르츠 삼각형 함수|슈워츠 s-함수]]<br>
+
==타원적분과 초기하급수==
  
 
+
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]:<math>K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math>
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">special values</h5>
+
  
*  Chu-Vandermonde 공식<br><math>\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}</math><br> 아래 가우스 공식에서 <math>a=-n</math>인 경우에 얻어진다<br>
+
==모듈라 함수와의 관계==
  
* 가우스 공식<br><math>\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}</math><br>
+
* [[라마누잔과 파이]]
*  위의 두 식에 대해서는 [[초기하급수의 합공식|초기하 급수의 합공식]]<br>
+
* '''[BB1998]'''[http://www.amazon.com/PI-AGM-Analytic-Computational-Complexity/dp/047131515X Pi and the AGM]
* [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분|렘니스케이트(lemniscate) 곡선과 타원적분]]<br><math>\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;\frac{1}{2})=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots</math><br>
+
* Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998) 179,180p
* http://mathworld.wolfram.com/HypergeometricFunction.html<br><math>_2F_1(\frac{1}{3},\frac{2}{3};\frac{5}{6};\frac{27}{32})=\frac{8}{5}</math><br><math>_2F_1(\frac{1}{4},\frac{1}{2};\frac{3}{4};\frac{80}{81})=\frac{9}{5}</math><br><math>_2F_1(\frac{1}{8},\frac{3}{8};\frac{1}{2};\frac{2400}{2401})=\frac{2}{3}\sqrt{7}</math><br><math>_2F_1(\frac{1}{6},\frac{1}{3};\frac{1}{2};\frac{25}{27})=\frac{3}{4}\sqrt{3}</math><br><math>_2F_1(\frac{1}{6},\frac{1}{2};\frac{2}{3};\frac{125}{128})=\frac{4}{3}\sqrt[6]2</math><br><math>_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{1323}{1331})=\frac{3}{4}\sqrt[4]{11}</math><br><math>_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{121}{125})=\frac{\sqrt[6]{2}\sqrt[4]{15}}{4\sqrt{\pi}}\frac{\Gamma(\frac{1}{3})^3}{\Gamma(\frac{1}{4})^2}(1+\sqrt{3})</math><br>
+
* '''[Nes2002] 159p'''
  
 
+
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">재미있는 사실</h5>
+
==슈워츠 s-함수==
  
 
+
* [[슈바르츠 삼각형 함수|슈워츠 s-함수]]
  
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
+
  
 
+
  
 
+
==special values==
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">역사</h5>
+
*  Chu-Vandermonde 공식:<math>\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}</math> 아래 가우스 공식에서 <math>a=-n</math>인 경우에 얻어진다
  
* [[수학사연표 (역사)|수학사연표]]
+
* 가우스 공식:<math>\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}</math>
 +
*  위의 두 식에 대해서는 [[초기하급수의 합공식|초기하 급수의 합공식]]
 +
* [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분|렘니스케이트(lemniscate) 곡선과 타원적분]]:<math>\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;\frac{1}{2})=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots</math>
 +
* http://mathworld.wolfram.com/HypergeometricFunction.html:<math>_2F_1(\frac{1}{3},\frac{2}{3};\frac{5}{6};\frac{27}{32})=\frac{8}{5}</math>:<math>_2F_1(\frac{1}{4},\frac{1}{2};\frac{3}{4};\frac{80}{81})=\frac{9}{5}</math>:<math>_2F_1(\frac{1}{8},\frac{3}{8};\frac{1}{2};\frac{2400}{2401})=\frac{2}{3}\sqrt{7}</math>:<math>_2F_1(\frac{1}{6},\frac{1}{3};\frac{1}{2};\frac{25}{27})=\frac{3}{4}\sqrt{3}</math>:<math>_2F_1(\frac{1}{6},\frac{1}{2};\frac{2}{3};\frac{125}{128})=\frac{4}{3}\sqrt[6]2</math>:<math>_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{1323}{1331})=\frac{3}{4}\sqrt[4]{11}</math>:<math>_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{121}{125})=\frac{\sqrt[6]{2}\sqrt[4]{15}}{4\sqrt{\pi}}\frac{\Gamma(\frac{1}{3})^3}{\Gamma(\frac{1}{4})^2}(1+\sqrt{3})</math>
  
 
+
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">메모</h5>
+
==역사==
  
 
+
* [[수학사 연표]]
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련된 항목들</h5>
+
  
* [[periods]]<br>
+
==관련된 항목들==
* [[무리수와 초월수]]<br>
+
* [[주기 (period]]
* [[오일러 베타적분(베타함수)|오일러 베타적분]]<br>
+
* [[무리수와 초월수]]
* [[직교다항식과 special functions|Special functions]]<br>
+
* [[오일러 베타적분(베타함수)|오일러 베타적분]]
* [[맴돌이군과 미분방정식]]<br>
+
* [[직교다항식과 special functions|Special functions]]
 +
* [[맴돌이군과 미분방정식]]
  
 
 
  
 
 
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">수학용어번역</h5>
+
==매스매티카 파일 및 계산 리소스==
  
* http://www.google.com/dictionary?langpair=en|ko&q=
+
* https://docs.google.com/file/d/0B8XXo8Tve1cxWFFlaHc2OVdQLXc/edit
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
 
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* [http://ko.wikipedia.org/wiki/%EC%B4%88%EA%B8%B0%ED%95%98%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/초기하함수]
 
* [http://ko.wikipedia.org/wiki/%EC%B4%88%EA%B8%B0%ED%95%98%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/초기하함수]
181번째 줄: 136번째 줄:
 
* http://en.wikipedia.org/wiki/hypergeometric_differential_equation
 
* http://en.wikipedia.org/wiki/hypergeometric_differential_equation
 
* http://en.wikipedia.org/wiki/Frobenius_solution_to_the_hypergeometric_equation
 
* http://en.wikipedia.org/wiki/Frobenius_solution_to_the_hypergeometric_equation
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">expository articles</h5>
+
  
* [http://www.jstor.org/stable/2975319 On the Kummer Solutions of the Hypergeometric Equation]<br>
+
==리뷰논문, 에세이, 강의노트==
** Reese T. Prosser, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543   
+
* '''[Nes2002]'''[http://books.google.com/books?id=Up-XxkiTtdsC&pg=PA148&lpg=PA148&dq=On+the+Algebraic+Independence+of+Numbers+Yu.V.+Nesterenko&source=bl&ots=yOVhiH5ukL&sig=x0GqVIluMqw-_Iaf3tXtKxam50Q&hl=ko&ei=KIwRTPiwB4rcNcSE8ccF&sa=X&oi=book_result&ct=result&resnum=3&ved=0CCQQ6AEwAg#v=onepage&q=On%20the%20Algebraic%20Independence%20of%20Numbers%20Yu.V.%20Nesterenko&f=false On the Algebraic Independence of Numbers]
 
+
**  Yu.V. Nesterenko, in <em style="">A panorama in number theory, or, The view from Baker's garden</em> (by Alan Baker,Gisbert Wüstholz), 2002
* [http://dx.doi.org/10.1070/RM1990v045n01ABEH002325 Ramanujan and hypergeometric and basic hypergeometric series]<br>
+
* [http://www.jstor.org/stable/2975319 On the Kummer Solutions of the Hypergeometric Equation]
 +
** Reese T. Prosser, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543 
 +
* [http://dx.doi.org/10.1070/RM1990v045n01ABEH002325 Ramanujan and hypergeometric and basic hypergeometric series]
 
** R Askey 1990 Russ. Math. Surv. 45 37-86
 
** R Askey 1990 Russ. Math. Surv. 45 37-86
  
 
+
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련논문</h5>
+
==관련논문==
 
+
* http://arxiv.org/abs/1511.00020
* [http://dx.doi.org/10.1016/j.cam.2005.05.016 On the contiguous relations of hypergeometric series]<br>
+
* Schrenk, K. J., and J. D. Stevenson. “Numerical Evaluation of the Gauss Hypergeometric Function: Implementation and Application to Schramm-Loewner Evolution.” arXiv:1502.05624 [cond-Mat, Physics:physics], February 19, 2015. http://arxiv.org/abs/1502.05624.
 +
* [http://dx.doi.org/10.1016/j.cam.2005.05.016 On the contiguous relations of hypergeometric series]
 
** Medhat A. Rakha, Adel K. Ibrahim, Journal of Computational and Applied Mathematics, Volume 192, Issue 2, 1 August 2006, Pages 396-410
 
** Medhat A. Rakha, Adel K. Ibrahim, Journal of Computational and Applied Mathematics, Volume 192, Issue 2, 1 August 2006, Pages 396-410
* [http://people.math.jussieu.fr/%7Emiw/articles/pdf/TranscendencePeriods.pdf Transcendence of periods: the state of the art.]<br>
+
* [http://people.math.jussieu.fr/%7Emiw/articles/pdf/TranscendencePeriods.pdf Transcendence of periods: the state of the art.]
**  M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463.<br>
+
**  M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463.
* [http://dx.doi.org/10.1016/S0022-314X%2803%2900042-8 Exceptional sets of hypergeometric series]<br>
+
* [http://dx.doi.org/10.1016/S0022-314X%2803%2900042-8 Exceptional sets of hypergeometric series]
**  Natália Archinard, Journal of Number Theory Volume 101, Issue 2, August 2003, Pages 244-269<br>
+
**  Natália Archinard, Journal of Number Theory Volume 101, Issue 2, August 2003, Pages 244-269
* '''[Nes2002]'''[http://books.google.com/books?id=Up-XxkiTtdsC&pg=PA148&lpg=PA148&dq=On+the+Algebraic+Independence+of+Numbers+Yu.V.+Nesterenko&source=bl&ots=yOVhiH5ukL&sig=x0GqVIluMqw-_Iaf3tXtKxam50Q&hl=ko&ei=KIwRTPiwB4rcNcSE8ccF&sa=X&oi=book_result&ct=result&resnum=3&ved=0CCQQ6AEwAg#v=onepage&q=On%20the%20Algebraic%20Independence%20of%20Numbers%20Yu.V.%20Nesterenko&f=false On the Algebraic Independence of Numbers]<br>
+
* Thorsley, Michael D., and Marita C. Chidichimo. 2001. “An Asymptotic Expansion for the Hypergeometric Function 2F1(a,b;c;x).” Journal of Mathematical Physics 42 (4) (April 1): 1921–1930. doi:doi:10.1063/1.1353185. http://jmp.aip.org/resource/1/jmapaq/v42/i4/p1921_s1
**  Yu.V. Nesterenko, in <em style="">A panorama in number theory, or, The view from Baker's garden</em> (by Alan Baker,Gisbert Wüstholz), 2002<br>
+
* [http://dx.doi.org/10.1017/S0305004102005923 Special values of the hypergeometric series III]
 
+
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2002), 133 : 213-222
* [http://dx.doi.org/10.1017/S0305004102005923 Special values of the hypergeometric series III]<br>
+
* [http://dx.doi.org/10.1017/S0305004101005254 Special values of the hypergeometric series II]
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2002), 133 : 213-222
+
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2001), 131 : 309-319
 
+
*  Special values of the hypergeometric series
* [http://dx.doi.org/10.1017/S0305004101005254 Special values of the hypergeometric series II]<br>
+
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (1991) volume: 109 issue: 2 page: 257
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2001), 131 : 309-319
+
* [http://dx.doi.org/10.1007/BF01393999 Werte hypergeometrischer funktionen]
*  Special values of the hypergeometric series<br>
+
** Jürgen Wolfart, Inventiones Mathematicae Volume 92, Number 1 / 1988년 2월
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (1991)  volume: 109  issue: 2  page: 257
 
 
 
* [http://dx.doi.org/10.1007/BF01393999 Werte hypergeometrischer funktionen]<br>
 
** Jürgen Wolfart, Inventiones Mathematicae Volume 92, Number 1 / 1988년 2월
 
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/10.1007/978-3-7643-8284-1_2
 
 
 
 
 
 
 
 
 
 
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련도서</h5>
 
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련기사</h5>
 
  
*  네이버 뉴스 검색 (키워드 수정)<br>
+
[[분류:리만곡면론]]
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
+
[[분류:특수함수]]
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
  
 
+
==노트==
 +
===말뭉치===
 +
# This paper introduces the hypergeo package of R routines, for numerical calculation of hypergeometric functions.<ref name="ref_cfa2d4d9">[https://cran.r-project.org/web/packages/hypergeo/vignettes/hypergeometric.pdf Numerical evaluation of the gauss hypergeometric]</ref>
 +
# The package is focussed on ecient and accurate evaluation of the hypergeometric function over the whole of the complex plane within the constraints of xed-precision arithmetic.<ref name="ref_cfa2d4d9" />
 +
# 2 Numerical evaluation of the Gauss hypergeometric function with the hypergeo package when dened.<ref name="ref_cfa2d4d9" />
 +
# Writing a, b, c for the two upper and one lower argument respectively, the resulting function 2F1 (a, b; c; z) is known as the hypergeometric function.<ref name="ref_cfa2d4d9" />
 +
# For systematic lists of some of the many thousands of published identities involving the hypergeometric function, see the reference works by Erdélyi et al.<ref name="ref_2c109dda">[https://en.wikipedia.org/wiki/Hypergeometric_function Hypergeometric function]</ref>
 +
# Elliptic modular functions can sometimes be expressed as the inverse functions of ratios of hypergeometric functions whose arguments a, b, c are 1, 1/2, 1/3, ... or 0.<ref name="ref_2c109dda" />
 +
# We give a basic introduction to the properties of Gauss hypergeometric functions, with an emphasis on the determination of the monodromy group of the Gaussian hyperegeo- metric equation.<ref name="ref_1fc1f143">[https://xxyyzz.cc/beukers%20hypergeometric%20functions.pdf Gauss’ hypergeometric function]</ref>
 +
# Initially this document started as an informal introduction to Gauss hypergeometric functions for those who want to have a quick idea of some main facts on hypergeometric functions.<ref name="ref_1fc1f143" />
 +
# To confuse matters even more, the term "hypergeometric function" is less commonly used to mean closed form, and "hypergeometric series" is sometimes used to mean hypergeometric function.<ref name="ref_f254229c">[https://mathworld.wolfram.com/HypergeometricFunction.html Hypergeometric Function -- from Wolfram MathWorld]</ref>
 +
# The hypergeometric functions are solutions to the hypergeometric differential equation, which has a regular singular point at the origin.<ref name="ref_f254229c" />
 +
# Many functions of mathematical physics can be expressed as special cases of the hypergeometric functions.<ref name="ref_f254229c" />
 +
# We consider the asymptotic behavior of the Gauss hypergeometric function when several of the parameters a,b,c are large.<ref name="ref_3534f672">[https://www.sciencedirect.com/science/article/pii/S0377042702006271 Large parameter cases of the Gauss hypergeometric function]</ref>
 +
# Computes the Gauss hypergeometric function 2F1(a,b;c;z) and its derivative for real z, z<1 by integrating the defining differential equation using the Matlab differential equation solver ode15i.<ref name="ref_5ff86cd1">[https://www.mathworks.com/matlabcentral/fileexchange/21444-gauss-hypergeometric-function Gauss Hypergeometric Function]</ref>
 +
# The major development of the theory of hypergeometric function was carried out by Gauss and published in his famous work of 1812.<ref name="ref_673f6451">[https://core.ac.uk/download/pdf/82050565.pdf Computers and mathematics with applications 61 (2011) 620–629]</ref>
 +
# Almost all of the elementary functions of Mathematics are either hypergeometric, ratios of hypergeometric functions or limiting cases of a hypergeometric series.<ref name="ref_673f6451" />
 +
# Two hypergeometric functions with the same argument z are contiguous if their parameters a, b and c differ by integers.<ref name="ref_673f6451" />
 +
# A contiguous relation between any three contiguous hypergeometric functions can be found by combining linearly a sequence of Gauss contiguous relations.<ref name="ref_673f6451" />
 +
# In this course we will study multivariate hypergeometric functions in the sense of Gelfand, Kapranov, and Zelevinsky (GKZ systems).<ref name="ref_57bea61a">[https://people.math.umass.edu/~cattani/hypergeom_lectures.pdf Three lectures on hypergeometric functions]</ref>
 +
# These functions generalize the classical hypergeometric functions of Gauss, Horn, Appell, and Lauricella.<ref name="ref_57bea61a" />
 +
# We end with a brief discussion of the classication problem for rational hypergeometric functions.<ref name="ref_57bea61a" />
 +
# For one-variable hypergeometric functions this interplay has been well understood for several decades.<ref name="ref_57bea61a" />
 +
# Abstract The two most commonly used hypergeometric functions are the conflu- ent hypergeometric function and the Gauss hypergeometric function.<ref name="ref_3d1e3bde">[https://people.maths.ox.ac.uk/porterm/papers/hypergeometric-final.pdf Numer algor]</ref>
 +
# Except for specific situations, computing hypergeometric functions is difficult in practice.<ref name="ref_3d1e3bde" />
 +
# (a)j (b)j zj j ! , which is also commonly denoted by M(a; b; z) and is itself often called the confluent hypergeometric function.<ref name="ref_3d1e3bde" />
 +
# The function 2F1(a, b; c; z) is commonly denoted by F (a, b; c; z) and is also fre- quently called the Gauss hypergeometric function.<ref name="ref_3d1e3bde" />
 +
# We nd that, for both the conuent and Gauss hypergeometric functions, there is no simple answer to the problem of their computation, and dierent methods are optimal for dierent parameter regimes.<ref name="ref_89cba934">[https://www.math.ucla.edu/~mason/research/pearson_final.pdf Computation of]</ref>
 +
# 3.3 Writing the conuent hypergeometric function as a single fraction . . . . . .<ref name="ref_89cba934" />
 +
# 4.3 Writing the Gauss hypergeometric function as a single fraction .<ref name="ref_89cba934" />
 +
# The computation of the hypergeometric function pFq, a special function encountered in a variety of applications, is frequently sought.<ref name="ref_89cba934" />
 +
# Returns hyp2f1 scalar or ndarray The values of the gaussian hypergeometric function.<ref name="ref_1000609c">[https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hyp2f1.html scipy.special.hyp2f1 — SciPy v1.6.1 Reference Guide]</ref>
 +
# Using (41) and subordination property, we have thatBy adopting (13) and (64), we obtainApplying hypergeometric function (59), we obtain the upper bound for the case .<ref name="ref_8523a4ab">[https://www.researchgate.net/publication/267000586_An_integral_representation_of_some_hypergeometric_functions (PDF) An integral representation of some hypergeometric functions]</ref>
 +
# Recently, there has been a clear interest on Bessel and hypergeometric functions from the point of view of geometric function theory.<ref name="ref_8523a4ab" />
 +
# A hypergeometric function is the sum of a hypergeometric series, which is dened as follows.<ref name="ref_0f9b4ff4">[https://homepage.tudelft.nl/11r49/documents/wi4006/hyper.pdf Hypergeometric functions]</ref>
 +
# When one of the numerator parameters ai equals N , where N is a nonnegative integer, the hypergeometric function is a polynomial in z (see below).<ref name="ref_0f9b4ff4" />
 +
# Sometimes the most general hypergeometric function pFq is called a generalized hypergeo- metric function.<ref name="ref_0f9b4ff4" />
 +
# For the hypergeometric function 2F1 we have an integral representation due to Euler: Theorem 1.<ref name="ref_0f9b4ff4" />
 +
# This generally speeds up evaluation by producing a hypergeometric function of lower order.<ref name="ref_d5ee5555">[https://mpmath.org/doc/current/functions/hypergeometric.html Hypergeometric functions — mpmath 1.2.0 documentation]</ref>
 +
# Euler introduced the power series expansion of the form: where a, b, c are rational functions and F(a, b, c, z) is called the hypergeometric function.<ref name="ref_1c0038b8">[https://iopscience.iop.org/book/978-0-7503-1496-1/chapter/bk978-0-7503-1496-1ch1 Hypergeometric series]</ref>
 +
# The hypergeometric function takes a prominent position amongst the world of standard mathematical functions used in both pure and applied mathematics.<ref name="ref_1c0038b8" />
 +
# Gauss was aware of the multi-valuedness of the hypergeometric functions, known in recent times as the monodromy problem.<ref name="ref_1c0038b8" />
 +
# The modern notation for the Gauss hypergeometric function is according to Barnes (1908).<ref name="ref_1c0038b8" />
 +
# The classification recovers the classical transformations of degree 2, 3, 4, 6, and finds other transformations of some special classes of the Gauss hypergeometric function.<ref name="ref_627f557f">[https://ui.adsabs.harvard.edu/abs/2004math......8269V/abstract Algebraic transformations of Gauss hypergeometric functions]</ref>
 +
# This paper claims that the natural logarithm can be represented by the Gaussian hypergeometric function.<ref name="ref_90def12e">[https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3037643 Proof that the Natural Logarithm Can Be Represented by the Gaussian Hypergeometric Function by Christopher Paul Nofal :: SSRN]</ref>
 +
# We establish two quadratic transformations for Gauss hypergeometric function in terms of nite summation of combination of two Clausen hypergeometric functions.<ref name="ref_fc989b75">[http://www.pvamu.edu/aam/wp-content/uploads/sites/182/2020/04/SI0606_AAM_MQ_MK_031520_Published_040620.pdf Special issue no. 6 (april 2020), pp. 71 – 86]</ref>
 +
# Further, we have generalized our quadratic transformations in terms of general double series identities as well as in terms of reduction formulas for Kamp de Friets double hypergeometric function.<ref name="ref_fc989b75" />
 +
# The Hypergeometric functions of two variables was introduced by Appell (1880) and Lauricella (1893) generalized them to several variables.<ref name="ref_fc989b75" />
 +
# It is interesting to mention here that the results are very important for the application point of view, whenever hypergeometric functions reduce to gamma functions.<ref name="ref_fc989b75" />
 +
# In this sequel, using the same technique, we establish certain integral transforms and fractional integral formulas for the generalized Gauss hypergeometric functions .<ref name="ref_8691ba14">[https://www.hindawi.com/journals/aaa/2014/735946/ Certain Integral Transform and Fractional Integral Formulas for the Generalized Gauss Hypergeometric Functions]</ref>
 +
# For , and , we have where the , a special case of the generalized hypergeometric function (10), is the Gauss hypergeometric function.<ref name="ref_8691ba14" />
 +
# Further, if we set and in Theorems 1 to 5 or make use of the result (8), we obtain various integral transforms and fractional integral formulas for the Gauss hypergeometric function .<ref name="ref_8691ba14" />
 +
# This a hypergeometric equation with constants a, b and c dened by F = c, G = (a + b + 1) and H = ab and can therefore be solved near t = 0 and t = 1 in terms of the hypergeometric function.<ref name="ref_fa3ce4ee">[https://www.bits-pilani.ac.in/uploads/hypergeometric.pdf Gauss’s hypergeometric equation]</ref>
 +
# Problems: Find the general solution of each of the following dierential equations near the indicated singular point in terms of hypergeometric function.<ref name="ref_fa3ce4ee" />
 +
# However, the hypergeometric function is defined over the whole of the complex plane, so analytic continuation may be used if appropriate cut lines are used.<ref name="ref_aa8484f8">[https://rdrr.io/cran/hypergeo/man/hypergeo.html hypergeo: The hypergeometric function in hypergeo: The Gauss Hypergeometric Function]</ref>
 +
# Gausss hypergeometric function gives a modular parame- terization of period integrals of elliptic curves in Legendre normal form E() : y2 = x(x 1)(x ).<ref name="ref_7f2fb368">[https://uva.theopenscholar.com/files/ken-ono/files/128.pdf Gauss’s 2f1 hypergeometric function and the]</ref>
 +
# Legendre elliptic curves, hypergeometric functions.<ref name="ref_7f2fb368" />
 +
# Hypergeometric functions are rarely in a form in which these formulae can be applied directly.<ref name="ref_e330e8bc">[https://carma.newcastle.edu.au/resources/jon/Preprints/Papers/Submitted%20Papers/Walks/Papers/gen-contiguity.pdf J.  phys. a:  math. gen. 21 (1988)  1983-1998.  printed  in  the  u k  ]</ref>
 +
# Writing sums as hypergeometric functions has the great advantage of simplifying manipulation by computer algebraic methods.<ref name="ref_e330e8bc" />
 +
# It is assumed that the hypergeometric functions are convergent and do not contain negative integers in the bottom parameter list.<ref name="ref_e330e8bc" />
 +
# A particular solution of Gausss hypergeometric differential equation (1) is known as Gausss hypergeometric function or simply hypergeometric function.<ref name="ref_d72c50eb">[http://182.18.165.51/Fac_File/STUDY182@342556.pdf  ]</ref>
 +
# 2 ​ F 1 ​ ( a , b , c , z ) Regularized Gauss hypergeometric function RisingFactorial ( z ) k \left(z\right)_{k} ( z ) k ​ Rising factorial Pow a b {a}^{b} a b Power Factorial n ! n !<ref name="ref_4a0c664f">[https://fungrim.org/topic/Gauss_hypergeometric_function/ Gauss hypergeometric function]</ref>
 +
# The hypergeometric functions are solutions to the Hypergeometric Differential Equation, which has a Regular Singular Point at the Origin.<ref name="ref_5d632c1c">[https://archive.lib.msu.edu/crcmath/math/math/h/h445.htm Hypergeometric Function]</ref>
  
 
+
===소스===
 +
<references />
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">블로그</h5>
 
  
*  구글 블로그 검색<br>
+
==메타데이터==
** http://blogsearch.google.com/blogsearch?q=
+
===위키데이터===
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
* ID :  [https://www.wikidata.org/wiki/Q21028472 Q21028472]
* [http://math.dongascience.com/ 수학동아]
+
===Spacy 패턴 목록===
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
+
* [{'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}]
* [http://betterexplained.com/ BetterExplained]
+
* [{'LOWER': 'gaussian'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}]
 +
* [{'LOWER': 'ordinary'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}]

2021년 2월 23일 (화) 05:21 기준 최신판

개요

  • 초기하급수\[\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1\]

여기서 \((a)_n=a(a+1)(a+2)...(a+n-1)\)에 대해서는 포흐하머 (Pochhammer) 기호 항목 참조

  • 적분표현\[\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt\]
  • 초기하급수의 해석적확장을 통해 얻어진 함수를 초기하함수라 함
  • 오일러, 가우스, 쿰머, 리만,슈워츠 등의 연구



초기하급수로 표현되는 함수의 예



초기하 미분방정식

  • \(w(z)=\,_2F_1(a,b;c;z)\) 는 다음 피카드-Fuchs 형태의 미분방정식의 해가 된다

\[z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0\]




오일러의 변환 공식

\(_2F_1 (a,b;c;z) = (1-z)^{-a} {}_2F_1 (a, c-b;c ; \frac{z}{z-1})\)

\(_2F_1 (a,b;c;z) = (1-z)^{-b}{}_2F_1(c-a,b;c;\frac{z}{z-1})\)

\(_2F_1 (a,b;c;z) = (1-z)^{c-a-b}{}_2F_1 (c-a, c-b;c ; z)\)


증명

다음 적분표현을 활용

\(\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt\)

위의 우변에서 \(t\to 1-t\), \(t\to \frac{t}{1-z-tz}\), \(t\to \frac{1-t}{1-tz}\)의 변환을 이용하면 항등식이 얻어진다. ■



contiguous 관계



타원적분과 초기하급수



모듈라 함수와의 관계



슈워츠 s-함수



special values

  • Chu-Vandermonde 공식\[\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}\] 아래 가우스 공식에서 \(a=-n\)인 경우에 얻어진다
  • 가우스 공식\[\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\]
  • 위의 두 식에 대해서는 초기하 급수의 합공식
  • 렘니스케이트(lemniscate) 곡선과 타원적분\[\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;\frac{1}{2})=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\]
  • http://mathworld.wolfram.com/HypergeometricFunction.html\[_2F_1(\frac{1}{3},\frac{2}{3};\frac{5}{6};\frac{27}{32})=\frac{8}{5}\]\[_2F_1(\frac{1}{4},\frac{1}{2};\frac{3}{4};\frac{80}{81})=\frac{9}{5}\]\[_2F_1(\frac{1}{8},\frac{3}{8};\frac{1}{2};\frac{2400}{2401})=\frac{2}{3}\sqrt{7}\]\[_2F_1(\frac{1}{6},\frac{1}{3};\frac{1}{2};\frac{25}{27})=\frac{3}{4}\sqrt{3}\]\[_2F_1(\frac{1}{6},\frac{1}{2};\frac{2}{3};\frac{125}{128})=\frac{4}{3}\sqrt[6]2\]\[_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{1323}{1331})=\frac{3}{4}\sqrt[4]{11}\]\[_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{121}{125})=\frac{\sqrt[6]{2}\sqrt[4]{15}}{4\sqrt{\pi}}\frac{\Gamma(\frac{1}{3})^3}{\Gamma(\frac{1}{4})^2}(1+\sqrt{3})\]



역사



관련된 항목들


매스매티카 파일 및 계산 리소스



사전 형태의 자료



리뷰논문, 에세이, 강의노트



관련논문

노트

말뭉치

  1. This paper introduces the hypergeo package of R routines, for numerical calculation of hypergeometric functions.[1]
  2. The package is focussed on ecient and accurate evaluation of the hypergeometric function over the whole of the complex plane within the constraints of xed-precision arithmetic.[1]
  3. 2 Numerical evaluation of the Gauss hypergeometric function with the hypergeo package when dened.[1]
  4. Writing a, b, c for the two upper and one lower argument respectively, the resulting function 2F1 (a, b; c; z) is known as the hypergeometric function.[1]
  5. For systematic lists of some of the many thousands of published identities involving the hypergeometric function, see the reference works by Erdélyi et al.[2]
  6. Elliptic modular functions can sometimes be expressed as the inverse functions of ratios of hypergeometric functions whose arguments a, b, c are 1, 1/2, 1/3, ... or 0.[2]
  7. We give a basic introduction to the properties of Gauss hypergeometric functions, with an emphasis on the determination of the monodromy group of the Gaussian hyperegeo- metric equation.[3]
  8. Initially this document started as an informal introduction to Gauss hypergeometric functions for those who want to have a quick idea of some main facts on hypergeometric functions.[3]
  9. To confuse matters even more, the term "hypergeometric function" is less commonly used to mean closed form, and "hypergeometric series" is sometimes used to mean hypergeometric function.[4]
  10. The hypergeometric functions are solutions to the hypergeometric differential equation, which has a regular singular point at the origin.[4]
  11. Many functions of mathematical physics can be expressed as special cases of the hypergeometric functions.[4]
  12. We consider the asymptotic behavior of the Gauss hypergeometric function when several of the parameters a,b,c are large.[5]
  13. Computes the Gauss hypergeometric function 2F1(a,b;c;z) and its derivative for real z, z<1 by integrating the defining differential equation using the Matlab differential equation solver ode15i.[6]
  14. The major development of the theory of hypergeometric function was carried out by Gauss and published in his famous work of 1812.[7]
  15. Almost all of the elementary functions of Mathematics are either hypergeometric, ratios of hypergeometric functions or limiting cases of a hypergeometric series.[7]
  16. Two hypergeometric functions with the same argument z are contiguous if their parameters a, b and c differ by integers.[7]
  17. A contiguous relation between any three contiguous hypergeometric functions can be found by combining linearly a sequence of Gauss contiguous relations.[7]
  18. In this course we will study multivariate hypergeometric functions in the sense of Gelfand, Kapranov, and Zelevinsky (GKZ systems).[8]
  19. These functions generalize the classical hypergeometric functions of Gauss, Horn, Appell, and Lauricella.[8]
  20. We end with a brief discussion of the classication problem for rational hypergeometric functions.[8]
  21. For one-variable hypergeometric functions this interplay has been well understood for several decades.[8]
  22. Abstract The two most commonly used hypergeometric functions are the conflu- ent hypergeometric function and the Gauss hypergeometric function.[9]
  23. Except for specific situations, computing hypergeometric functions is difficult in practice.[9]
  24. (a)j (b)j zj j ! , which is also commonly denoted by M(a; b; z) and is itself often called the confluent hypergeometric function.[9]
  25. The function 2F1(a, b; c; z) is commonly denoted by F (a, b; c; z) and is also fre- quently called the Gauss hypergeometric function.[9]
  26. We nd that, for both the conuent and Gauss hypergeometric functions, there is no simple answer to the problem of their computation, and dierent methods are optimal for dierent parameter regimes.[10]
  27. 3.3 Writing the conuent hypergeometric function as a single fraction . . . . . .[10]
  28. 4.3 Writing the Gauss hypergeometric function as a single fraction .[10]
  29. The computation of the hypergeometric function pFq, a special function encountered in a variety of applications, is frequently sought.[10]
  30. Returns hyp2f1 scalar or ndarray The values of the gaussian hypergeometric function.[11]
  31. Using (41) and subordination property, we have thatBy adopting (13) and (64), we obtainApplying hypergeometric function (59), we obtain the upper bound for the case .[12]
  32. Recently, there has been a clear interest on Bessel and hypergeometric functions from the point of view of geometric function theory.[12]
  33. A hypergeometric function is the sum of a hypergeometric series, which is dened as follows.[13]
  34. When one of the numerator parameters ai equals N , where N is a nonnegative integer, the hypergeometric function is a polynomial in z (see below).[13]
  35. Sometimes the most general hypergeometric function pFq is called a generalized hypergeo- metric function.[13]
  36. For the hypergeometric function 2F1 we have an integral representation due to Euler: Theorem 1.[13]
  37. This generally speeds up evaluation by producing a hypergeometric function of lower order.[14]
  38. Euler introduced the power series expansion of the form: where a, b, c are rational functions and F(a, b, c, z) is called the hypergeometric function.[15]
  39. The hypergeometric function takes a prominent position amongst the world of standard mathematical functions used in both pure and applied mathematics.[15]
  40. Gauss was aware of the multi-valuedness of the hypergeometric functions, known in recent times as the monodromy problem.[15]
  41. The modern notation for the Gauss hypergeometric function is according to Barnes (1908).[15]
  42. The classification recovers the classical transformations of degree 2, 3, 4, 6, and finds other transformations of some special classes of the Gauss hypergeometric function.[16]
  43. This paper claims that the natural logarithm can be represented by the Gaussian hypergeometric function.[17]
  44. We establish two quadratic transformations for Gauss hypergeometric function in terms of nite summation of combination of two Clausen hypergeometric functions.[18]
  45. Further, we have generalized our quadratic transformations in terms of general double series identities as well as in terms of reduction formulas for Kamp de Friets double hypergeometric function.[18]
  46. The Hypergeometric functions of two variables was introduced by Appell (1880) and Lauricella (1893) generalized them to several variables.[18]
  47. It is interesting to mention here that the results are very important for the application point of view, whenever hypergeometric functions reduce to gamma functions.[18]
  48. In this sequel, using the same technique, we establish certain integral transforms and fractional integral formulas for the generalized Gauss hypergeometric functions .[19]
  49. For , and , we have where the , a special case of the generalized hypergeometric function (10), is the Gauss hypergeometric function.[19]
  50. Further, if we set and in Theorems 1 to 5 or make use of the result (8), we obtain various integral transforms and fractional integral formulas for the Gauss hypergeometric function .[19]
  51. This a hypergeometric equation with constants a, b and c dened by F = c, G = (a + b + 1) and H = ab and can therefore be solved near t = 0 and t = 1 in terms of the hypergeometric function.[20]
  52. Problems: Find the general solution of each of the following dierential equations near the indicated singular point in terms of hypergeometric function.[20]
  53. However, the hypergeometric function is defined over the whole of the complex plane, so analytic continuation may be used if appropriate cut lines are used.[21]
  54. Gausss hypergeometric function gives a modular parame- terization of period integrals of elliptic curves in Legendre normal form E() : y2 = x(x 1)(x ).[22]
  55. Legendre elliptic curves, hypergeometric functions.[22]
  56. Hypergeometric functions are rarely in a form in which these formulae can be applied directly.[23]
  57. Writing sums as hypergeometric functions has the great advantage of simplifying manipulation by computer algebraic methods.[23]
  58. It is assumed that the hypergeometric functions are convergent and do not contain negative integers in the bottom parameter list.[23]
  59. A particular solution of Gausss hypergeometric differential equation (1) is known as Gausss hypergeometric function or simply hypergeometric function.[24]
  60. 2 ​ F 1 ​ ( a , b , c , z ) Regularized Gauss hypergeometric function RisingFactorial ( z ) k \left(z\right)_{k} ( z ) k ​ Rising factorial Pow a b {a}^{b} a b Power Factorial n ! n ![25]
  61. The hypergeometric functions are solutions to the Hypergeometric Differential Equation, which has a Regular Singular Point at the Origin.[26]

소스

  1. 이동: 1.0 1.1 1.2 1.3 Numerical evaluation of the gauss hypergeometric
  2. 이동: 2.0 2.1 Hypergeometric function
  3. 이동: 3.0 3.1 Gauss’ hypergeometric function
  4. 이동: 4.0 4.1 4.2 Hypergeometric Function -- from Wolfram MathWorld
  5. Large parameter cases of the Gauss hypergeometric function
  6. Gauss Hypergeometric Function
  7. 이동: 7.0 7.1 7.2 7.3 Computers and mathematics with applications 61 (2011) 620–629
  8. 이동: 8.0 8.1 8.2 8.3 Three lectures on hypergeometric functions
  9. 이동: 9.0 9.1 9.2 9.3 Numer algor
  10. 이동: 10.0 10.1 10.2 10.3 Computation of
  11. scipy.special.hyp2f1 — SciPy v1.6.1 Reference Guide
  12. 이동: 12.0 12.1 (PDF) An integral representation of some hypergeometric functions
  13. 이동: 13.0 13.1 13.2 13.3 Hypergeometric functions
  14. Hypergeometric functions — mpmath 1.2.0 documentation
  15. 이동: 15.0 15.1 15.2 15.3 Hypergeometric series
  16. Algebraic transformations of Gauss hypergeometric functions
  17. Proof that the Natural Logarithm Can Be Represented by the Gaussian Hypergeometric Function by Christopher Paul Nofal :: SSRN
  18. 이동: 18.0 18.1 18.2 18.3 Special issue no. 6 (april 2020), pp. 71 – 86
  19. 이동: 19.0 19.1 19.2 Certain Integral Transform and Fractional Integral Formulas for the Generalized Gauss Hypergeometric Functions
  20. 이동: 20.0 20.1 Gauss’s hypergeometric equation
  21. hypergeo: The hypergeometric function in hypergeo: The Gauss Hypergeometric Function
  22. 이동: 22.0 22.1 Gauss’s 2f1 hypergeometric function and the
  23. 이동: 23.0 23.1 23.2 J. phys. a: math. gen. 21 (1988) 1983-1998. printed in the u k
  24. [1]
  25. Gauss hypergeometric function
  26. Hypergeometric Function


메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}]
  • [{'LOWER': 'gaussian'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}]
  • [{'LOWER': 'ordinary'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}]