"라그랑지 resolvent"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
37번째 줄: | 29번째 줄: | ||
* [[가우스 합]] | * [[가우스 합]] | ||
* <math>p</math> 는 홀수인 소수 | * <math>p</math> 는 홀수인 소수 | ||
− | + | * <math>a=1</math>이고 <math>\chi(t)=\left(\frac{t}{p}\right)</math> 일 때, 가우스합은 다음과 같이 주어짐 | |
− | <math>a=1</math>이고 <math>\chi(t)= | + | $$ |
− | + | g_1(\chi) := \sum_{a \in \mathbb Z/p\mathbb Z} \left(\frac{a}{p}\right)e^{2 \pi i a/p}=\sum_{a \in \mathbb Z/p\mathbb Z} \left(\frac{a}{p}\right) \zeta^a=\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^a | |
− | + | $$ | |
50번째 줄: | 42번째 줄: | ||
* [[순환 체확장(cyclic extension)]]<br> | * [[순환 체확장(cyclic extension)]]<br> | ||
− | <math>F</math>가 primitive n-th root of unity <math> | + | <math>F</math>가 primitive n-th root of unity <math>\zeta_n</math>를 포함하는 체 |
<math>K</math>가 F의 순환체확장이면, 적당한 원소 <math>a\in F</math> 가 존재하여, <math>K= F(a)</math>와 <math>a^n\in F</math> 를 만족시킨다. | <math>K</math>가 F의 순환체확장이면, 적당한 원소 <math>a\in F</math> 가 존재하여, <math>K= F(a)</math>와 <math>a^n\in F</math> 를 만족시킨다. | ||
60번째 줄: | 52번째 줄: | ||
<math>a=\tau(b)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)</math> 로 정의되는 수가 중요한 역할을 한다. | <math>a=\tau(b)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)</math> 로 정의되는 수가 중요한 역할을 한다. | ||
− | + | <math>\sigma(a)=\zeta_n^{-1}a</math> 임을 다음과 같이 보일 수 있다. | |
− | + | :<math>\sigma(a)=\sigma\left(\tau(b)\right)=\sigma\left(\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)\right)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^{i+1}(b)=\zeta_n^{-1}\sum_{i=0}^{n-1}\zeta_n^{i+1}\sigma^{i+1}(b)=\zeta_n^{-1}a</math> | |
105번째 줄: | 97번째 줄: | ||
==수학용어번역== | ==수학용어번역== | ||
− | + | * {{학술용어집|url=resolvent}} | |
− | * | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
122번째 줄: | 104번째 줄: | ||
==매스매티카 파일 및 계산 리소스== | ==매스매티카 파일 및 계산 리소스== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==사전 형태의 자료== | ==사전 형태의 자료== | ||
139번째 줄: | 111번째 줄: | ||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
==리뷰논문, 에세이, 강의노트== | ==리뷰논문, 에세이, 강의노트== | ||
− | |||
* [http://people.reed.edu/%7Ejerry/361/lectures/gslag.pdf WHENCE GAUSS SUMS?] | * [http://people.reed.edu/%7Ejerry/361/lectures/gslag.pdf WHENCE GAUSS SUMS?] | ||
2013년 3월 14일 (목) 01:07 판
개요
- 다음과 같은 곳에서 등장
- 가우스 합
- 가해인 다항식의 근을 찾는 과정
- \(\chi\)-weighted average over the Galois orbit of \(\theta\)
정의와 주요 성질
- \(K/F\) 는 순환체확장
- \(\text{Gal}(K/F)\) 는 크기가 n인 갈루아 군
- charater \(\chi : \text{Gal}(K/F) \to F\)와 \(\theta\in K\)에 대하여 라그랑지 resolvent를 다음과 같이 정의함\[R(\theta,\chi)=\sum_{g\in G}\chi(g)g(\theta)\in K\]
- 중요한 성질
- (equivariance) 임의의 \(g\in G\) 에 대하여 \(g(R)=\chi(g^{-1})R\)
- 임의의 \(g\in G\) 에 대하여 \(g(R^n)=R^n\). 따라서 \(R^n\in F\)
- \(\chi\) 가 character group 의 생성원인 경우,\[\theta=\frac{1}{n}\sum_{i=0}^{n-1}R(\theta,\chi^{i})\]
- 이로부터 \(\theta\in K\) 를 F의 원소의 radical 들의 합으로 표현할 수 있음을 안다
가우스 합의 예
- 가우스 합
- \(p\) 는 홀수인 소수
- \(a=1\)이고 \(\chi(t)=\left(\frac{t}{p}\right)\) 일 때, 가우스합은 다음과 같이 주어짐
$$ g_1(\chi) := \sum_{a \in \mathbb Z/p\mathbb Z} \left(\frac{a}{p}\right)e^{2 \pi i a/p}=\sum_{a \in \mathbb Z/p\mathbb Z} \left(\frac{a}{p}\right) \zeta^a=\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^a $$
순환 체확장에서의 응용
\(F\)가 primitive n-th root of unity \(\zeta_n\)를 포함하는 체
\(K\)가 F의 순환체확장이면, 적당한 원소 \(a\in F\) 가 존재하여, \(K= F(a)\)와 \(a^n\in F\) 를 만족시킨다.
\(\text{Gal}(K/F)\) 가 \(\sigma\)에 의하여 생성되는 순환군이라 하자.
\(K\)에 정의된 \(F\)-선형사상 \(\tau=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i\)는 \(\{\sigma^i\}\)의 선형독립성에 의하여 0이 아님을 알 수 있고, 따라서 \(\tau(b)\in K\neq 0 \) 인 \(b\in K\)가 존재한다.
\(a=\tau(b)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)\) 로 정의되는 수가 중요한 역할을 한다.
\(\sigma(a)=\zeta_n^{-1}a\) 임을 다음과 같이 보일 수 있다.
\[\sigma(a)=\sigma\left(\tau(b)\right)=\sigma\left(\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)\right)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^{i+1}(b)=\zeta_n^{-1}\sum_{i=0}^{n-1}\zeta_n^{i+1}\sigma^{i+1}(b)=\zeta_n^{-1}a\]
역사
메모
- the Gauss sum is a special case of a general symmetrizing device, the Lagrange resolvent, that has built-in equivaraiance and equation-solving properties that are easier to understand in general than in the confusingly overly-specic context of Gauss sums alone. http://people.reed.edu/~jerry/361/lectures/gslag.pdf
- http://www.math.umn.edu/~garrett/m/v/kummer_eis.pdf
- http://www.encyclopediaofmath.org/index.php/Resolvent
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- resolvent - 대한수학회 수학용어집
매스매티카 파일 및 계산 리소스
사전 형태의 자료
리뷰논문, 에세이, 강의노트