"라그랑지 resolvent"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소==
 
 
* [[라그랑지 resolvent|라그랑지 resolvents]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
37번째 줄: 29번째 줄:
 
* [[가우스 합]]
 
* [[가우스 합]]
 
* <math>p</math> 는 홀수인 소수
 
* <math>p</math> 는 홀수인 소수
 
+
* <math>a=1</math>이고 <math>\chi(t)=\left(\frac{t}{p}\right)</math> 일 때, 가우스합은 다음과 같이 주어짐
<math>a=1</math>이고 <math>\chi(t)=$\left(\frac{t}{p}\right)</math> 일 때, 가우스합은 다음과 같이 주어짐
+
$$
 
+
g_1(\chi) := \sum_{a \in \mathbb Z/p\mathbb Z} \left(\frac{a}{p}\right)e^{2 \pi i a/p}=\sum_{a \in \mathbb Z/p\mathbb Z} \left(\frac{a}{p}\right) \zeta^a=\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^a
<math>g_1(\chi) := \sum_{a \in \mathbb Z/p\mathbb Z} \left(\frac{a}{p}\right)e^{2 \pi i a/p}=\sum_{a \in \mathbb Z/p\mathbb Z} \left(\frac{a}{p}\right) \zeta^a}=\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^a}</math>
+
$$
  
 
 
 
 
50번째 줄: 42번째 줄:
 
* [[순환 체확장(cyclic extension)]]<br>
 
* [[순환 체확장(cyclic extension)]]<br>
  
<math>F</math>가 primitive n-th root of unity <math>}\zeta_n</math>를 포함하는 체
+
<math>F</math>가 primitive n-th root of unity <math>\zeta_n</math>를 포함하는 체
  
 
<math>K</math>가 F의 순환체확장이면, 적당한 원소 <math>a\in F</math> 가 존재하여, <math>K= F(a)</math>와 <math>a^n\in F</math> 를 만족시킨다.
 
<math>K</math>가 F의 순환체확장이면, 적당한 원소 <math>a\in F</math> 가 존재하여, <math>K= F(a)</math>와 <math>a^n\in F</math> 를 만족시킨다.
60번째 줄: 52번째 줄:
 
<math>a=\tau(b)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)</math>  로 정의되는 수가 중요한 역할을 한다.
 
<math>a=\tau(b)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)</math>  로 정의되는 수가 중요한 역할을 한다.
  
  <math>\sigma(a)=\zeta_n^{-1}a</math>  임을 다음과 같이 보일 수 있다.
+
<math>\sigma(a)=\zeta_n^{-1}a</math>  임을 다음과 같이 보일 수 있다.
  
 <math>\sigma(a)=\sigma\left(\tau(b)\right)=\sigma\left(\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)\right)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^{i+1}(b)=\zeta_n^{-1}\sum_{i=0}^{n-1}\zeta_n^{i+1}\sigma^{i+1}(b)=\zeta_n^{-1}a</math>
+
:<math>\sigma(a)=\sigma\left(\tau(b)\right)=\sigma\left(\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)\right)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^{i+1}(b)=\zeta_n^{-1}\sum_{i=0}^{n-1}\zeta_n^{i+1}\sigma^{i+1}(b)=\zeta_n^{-1}a</math>
  
 
 
 
 
105번째 줄: 97번째 줄:
  
 
==수학용어번역==
 
==수학용어번역==
 
+
* {{학술용어집|url=resolvent}}
* 단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
  
122번째 줄: 104번째 줄:
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
  
*  
 
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
  
 
 
  
 
 
  
 
==사전 형태의 자료==
 
==사전 형태의 자료==
139번째 줄: 111번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
  
 
 
 
 
  
 
==리뷰논문, 에세이, 강의노트==
 
==리뷰논문, 에세이, 강의노트==
 
 
* [http://people.reed.edu/%7Ejerry/361/lectures/gslag.pdf WHENCE GAUSS SUMS?]
 
* [http://people.reed.edu/%7Ejerry/361/lectures/gslag.pdf WHENCE GAUSS SUMS?]
  

2013년 3월 14일 (목) 01:07 판

개요

  • 다음과 같은 곳에서 등장
  • \(\chi\)-weighted average over the Galois orbit of \(\theta\)

 

 

정의와 주요 성질

  • \(K/F\) 는 순환체확장
  • \(\text{Gal}(K/F)\) 는 크기가 n인 갈루아 군
  • charater \(\chi : \text{Gal}(K/F) \to F\)와 \(\theta\in K\)에 대하여 라그랑지 resolvent를 다음과 같이 정의함\[R(\theta,\chi)=\sum_{g\in G}\chi(g)g(\theta)\in K\]
  • 중요한 성질
    • (equivariance) 임의의 \(g\in G\) 에 대하여 \(g(R)=\chi(g^{-1})R\)
    • 임의의 \(g\in G\) 에 대하여 \(g(R^n)=R^n\). 따라서 \(R^n\in F\)
  • \(\chi\) 가 character group 의 생성원인 경우,\[\theta=\frac{1}{n}\sum_{i=0}^{n-1}R(\theta,\chi^{i})\]
  • 이로부터 \(\theta\in K\) 를 F의 원소의 radical 들의 합으로 표현할 수 있음을 안다

 

 

가우스 합의 예

  • 가우스 합
  • \(p\) 는 홀수인 소수
  • \(a=1\)이고 \(\chi(t)=\left(\frac{t}{p}\right)\) 일 때, 가우스합은 다음과 같이 주어짐

$$ g_1(\chi) := \sum_{a \in \mathbb Z/p\mathbb Z} \left(\frac{a}{p}\right)e^{2 \pi i a/p}=\sum_{a \in \mathbb Z/p\mathbb Z} \left(\frac{a}{p}\right) \zeta^a=\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^a $$

 

 

순환 체확장에서의 응용

\(F\)가 primitive n-th root of unity \(\zeta_n\)를 포함하는 체

\(K\)가 F의 순환체확장이면, 적당한 원소 \(a\in F\) 가 존재하여, \(K= F(a)\)와 \(a^n\in F\) 를 만족시킨다.

\(\text{Gal}(K/F)\) 가 \(\sigma\)에 의하여 생성되는 순환군이라 하자.

\(K\)에 정의된 \(F\)-선형사상 \(\tau=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i\)는 \(\{\sigma^i\}\)의 선형독립성에 의하여 0이 아님을 알 수 있고, 따라서 \(\tau(b)\in K\neq 0 \) 인 \(b\in K\)가 존재한다. 

\(a=\tau(b)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)\)  로 정의되는 수가 중요한 역할을 한다.

\(\sigma(a)=\zeta_n^{-1}a\)  임을 다음과 같이 보일 수 있다.

\[\sigma(a)=\sigma\left(\tau(b)\right)=\sigma\left(\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)\right)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^{i+1}(b)=\zeta_n^{-1}\sum_{i=0}^{n-1}\zeta_n^{i+1}\sigma^{i+1}(b)=\zeta_n^{-1}a\]

 

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

사전 형태의 자료

 

리뷰논문, 에세이, 강의노트