"아이젠슈타인 기약다항식 판정법"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
15번째 줄: 15번째 줄:
  
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
  
 
+
  
 
   
 
   
26번째 줄: 26번째 줄:
 
* David A. Cox, "[http://www.cs.amherst.edu/%7Edac/normat.pdf Why Eisenstein proved the Eisenstein Criterion and why Schönemann discovered it first]", American Mathematical Monthly 118 Vol 1 (January 2011)
 
* David A. Cox, "[http://www.cs.amherst.edu/%7Edac/normat.pdf Why Eisenstein proved the Eisenstein Criterion and why Schönemann discovered it first]", American Mathematical Monthly 118 Vol 1 (January 2011)
  
 
+
 
[[분류:타원적분]]
 
[[분류:타원적분]]

2020년 12월 28일 (월) 03:41 기준 최신판

개요

  • 정수계수 다항식이 기약다항식이 될 충분조건의 하나
정리 (아이젠슈타인)

정수계수 다항식 \(a_0x^n + a_1x_{n−1} +\cdots+a_n\)의 \(a_0\)를 제외한 모든 계수가 적당한 소수 \(p\)에 의해 나누어지고, \(a_n\)이 \(p^2\)로 나누어지지 않으면, 이는 기약다항식이다.

  • 다항식 \(x^5-2\)는 기약다항식이다. \(p=2\)를 이용할 수 있다.


원분다항식의 기약판정



관련된 항목들

리뷰, 에세이, 강의노트