구면삼각법

수학노트
이동: 둘러보기, 검색

개요

  • 구면기하학의 삼각형, 즉 구면삼각형의 변과 각 사이에 성립하는 관계
  • 구면의 반지름이 1이라 하면, 변의 길이는 각도로 이해할 수 있다

356px-RechtwKugeldreieck.svg.png


사인과 코사인 법칙

사인 법칙

$$ \frac{\sin A}{\sin a}=\frac{\sin B}{\sin b}=\frac{\sin C}{\sin c} $$

코사인 법칙

\[\cos a= \cos b \cos c + \sin b \sin c \cos A \!\] \[\cos b= \cos c \cos a + \sin c \sin a \cos B \!\] \[\cos c= \cos a \cos b + \sin a \sin b \cos C \!\]


직각삼각형

  • $C=\pi/2$라 가정하는 경우, 네이피어의 공식을 얻는다

\( \begin{alignat}{4} &\text{(R1)}&\qquad \cos c&=\cos a\,\cos b, &\qquad\qquad &\text{(R6)}&\qquad \tan b&=\cos A\,\tan c,\\ &\text{(R2)}& \sin a&=\sin A\,\sin c, &&\text{(R7)}& \tan a&=\cos B\,\tan c,\\ &\text{(R3)}& \sin b&=\sin B\,\sin c, &&\text{(R8)}& \cos A&=\sin B\,\cos a,\\ &\text{(R4)}& \tan a&=\tan A\,\sin b, &&\text{(R9)}& \cos B&=\sin A\,\cos b,\\ &\text{(R5)}& \tan b&=\tan B\,\sin a, &&\text{(R10)}& \cos c&=\cot A\,\cot B. \end{alignat} \)


메모

 

 

관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


리뷰, 에세이, 강의노트