"다이로그 함수와 부정적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
7번째 줄: 7번째 줄:
 
==오일러치환==
 
==오일러치환==
  
*  유리함수 <math>R(x,y)</math>와 <math>Q(x,y)</math>에 대하여 다음과 같은 적분에 대하여 [[오일러 치환]]을 사용할 수 있다<br><math>\int R(x,\sqrt{ax^2+bx+c})\log Q(x,\sqrt{ax^2+bx+c})\,dx</math><br>
+
*  유리함수 <math>R(x,y)</math>와 <math>Q(x,y)</math>에 대하여 다음과 같은 적분에 대하여 [[오일러 치환]]을 사용할 수 있다:<math>\int R(x,\sqrt{ax^2+bx+c})\log Q(x,\sqrt{ax^2+bx+c})\,dx</math><br>
 
* <math>c>0</math> 일때, <math>\sqrt{ax^2+bx+c}=xt+\sqrt{c}</math> 로 치환<br>
 
* <math>c>0</math> 일때, <math>\sqrt{ax^2+bx+c}=xt+\sqrt{c}</math> 로 치환<br>
*  예<br><math>I=\int \frac{1}{x\sqrt{1+x^2}}\log(x+\sqrt{1+x^2})\,dx</math><br>  <br><math>\sqrt{1+x^2}=xt+1</math><br><math>x=\frac{2t}{1-t^2}</math><br><math>I=\int\frac{1}{t}\{\log(1+t)-\log(1-t)\}\,dt</math><br><math>=\operatorname{Li}_{2}(\frac{\sqrt{1+x^2}-1}{x})-\operatorname{Li}_{2}(1-\frac{\sqrt{1+x^2}}{x})</math><br>
+
*  예:<math>I=\int \frac{1}{x\sqrt{1+x^2}}\log(x+\sqrt{1+x^2})\,dx</math><br>  :<math>\sqrt{1+x^2}=xt+1</math>:<math>x=\frac{2t}{1-t^2}</math>:<math>I=\int\frac{1}{t}\{\log(1+t)-\log(1-t)\}\,dt</math>:<math>=\operatorname{Li}_{2}(\frac{\sqrt{1+x^2}-1}{x})-\operatorname{Li}_{2}(1-\frac{\sqrt{1+x^2}}{x})</math><br>
  
 
   
 
   

2013년 1월 12일 (토) 10:20 판

개요

오일러치환

  • 유리함수 \(R(x,y)\)와 \(Q(x,y)\)에 대하여 다음과 같은 적분에 대하여 오일러 치환을 사용할 수 있다\[\int R(x,\sqrt{ax^2+bx+c})\log Q(x,\sqrt{ax^2+bx+c})\,dx\]
  • \(c>0\) 일때, \(\sqrt{ax^2+bx+c}=xt+\sqrt{c}\) 로 치환
  • 예\[I=\int \frac{1}{x\sqrt{1+x^2}}\log(x+\sqrt{1+x^2})\,dx\]
    \[\sqrt{1+x^2}=xt+1\]\[x=\frac{2t}{1-t^2}\]\[I=\int\frac{1}{t}\{\log(1+t)-\log(1-t)\}\,dt\]\[=\operatorname{Li}_{2}(\frac{\sqrt{1+x^2}-1}{x})-\operatorname{Li}_{2}(1-\frac{\sqrt{1+x^2}}{x})\]



여러가지 부정적분

\(\alpha\neq\gamma\)인 경우

\(\int\frac{\log(\alpha+t)}{\gamma+t}\,dt=\log(\alpha-\gamma)\log(\frac{\gamma+t}{\gamma})-\operatorname{Li}_{2}(\frac{\gamma+t}{\gamma-\alpha})+C\)


\(\int\frac{\log(\gamma+t)}{\gamma+t}\,dt=\frac{1}{2}\log^2(\gamma+t)+C\)

\(\int_{0}^{x}\frac{\log x}{\sqrt{1+x^2}}\,dx=\frac{1}{2}\operatorname{Li}_2((\sqrt{1+x^2}-x)^2)+\frac{1}{2}\log^2(\frac{\sqrt{1+x^2}+x}{2})\)

\(\int_{0}^{x}\frac{\log (1+x^2)}{\sqrt{1-x}}\,dx=\frac{1}{4}\operatorname{Li}_2(-x)+\frac{1}{2}\operatorname{Li}_2(\frac{2x}{1+x^2})-\operatorname{Li}_2(x)+\frac{1}{4}\log^2(1+x^2)-\log(1-x)\log(1+x^2)\)

\(\int_{0}^{x}\frac{\log x\log(x-1)}{x}\,dx=\operatorname{Li}_3(x)-\log x\operatorname{Li}_2(x)\)






역사



메모

관련된 항목들



수학용어번역



사전 형태의 자료