르장드르 부호와 자코비 부호

수학노트
이동: 둘러보기, 검색

개요

  • 이차잉여의 상호법칙 을 기술하기 위한 필요에서 탄생, 정수론에서 중요한 역할
  • 정수 $a$와 홀수인 소수 $p$ 에 대하여, 르장드르 부호를 다음과 같이 정의한다

\[\left(\frac{a}{p}\right) = \begin{cases} \;\;\,0\mbox{ if } a \equiv 0 \pmod{p} \\+1\mbox{ if }a \not\equiv 0\pmod{p} \mbox{ and for some integer }x, \;a\equiv x^2\pmod{p} \\-1\mbox{ if there is no such } x. \end{cases}\]

  • 자코비 부호는 르장드르 부호의 일반화이다
  • 정수 $a$와 양수인 홀수 $n$ 에 대하여, 자코비 부호를 다음과 같이 정의한다

\[\Bigg(\frac{a}{n}\Bigg) = \left(\frac{a}{p_1}\right)^{\alpha_1}\left(\frac{a}{p_2}\right)^{\alpha_2}\cdots \left(\frac{a}{p_k}\right)^{\alpha_k}\] 여기서 $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$

  • 자코비 부호 \(\chi(\cdot)=(\tfrac{\cdot}{n})\) 는 $(\mathbb{Z}/n\mathbb{Z})^{\times}$ 에 대한 디리클레 캐릭터 가 된다

이차잉여

  • \(\left(\tfrac{a}{n}\right)=-1\) 이면 $a$는 모듈로 $n$에 대한 비이차잉여이다
  • $a$가 모듈로 $n$에 대한 이차잉여 이면 \(\left(\tfrac{a}{n}\right)=1\) 이 성립한다
  • 주의 \(\left(\tfrac{2}{15}\right)=1\) 이지만 2는 모듈로 15에 대한 이차잉여 가 아니다


역사

 

 

 

메모

 

 

 

관련된 항목들

 


매스매티카 파일 및 계산 리소스

 

사전 형태의 자료