"리대수 sl(2,C)의 유한차원 표현론"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
49번째 줄: 49번째 줄:
 
==파울리 행렬==
 
==파울리 행렬==
  
* [[파울리 행렬]]<br>
+
* [[파울리 행렬]]의 선형결합으로 리대수 $\mathfrak{sl}(2)$ 의 원소를 표현할 수 있으며, 특별히 생성원 $E,F$는 raising and lowering 연산자로 불리며 다음과 같이 표현된다 $$H=\sigma_{z}=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}$$ $$E=\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}$$ $$F=\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}$$ $$[\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}$$
raising and lowering 연산자<br><math>\sigma_{\pm}=\frac{1}{2}(\sigma_{x}\pm i\sigma_{y})</math><br><math>\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}</math><br><math>\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}</math><br><math>[\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}</math><br>
 
  
 
 
 
 

2012년 11월 18일 (일) 07:42 판

이 항목의 수학노트 원문주소

 

 

개요

  • 리대수 \(\mathfrak{sl}(2)\)

 

 

리대수 \(\mathfrak{sl}(2)\)

  • 3차원 리대수 \[E=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}\] \[F=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}\] \[H=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\]
  • \(L=\langle E,F,H \rangle\)
  • commutator
    \([E,F]=H\)
    \([H,E]=2E\)
    \([H,F]=-2F\)
  • universal enveloping algebra의 PBW 기저 \(\{F^kH^lE^m|k,l,m\geq 0\}\)

 

 

highest weight representation

  • \(\mathbb{F}\) : algebraically closed field with characteristic 0
  • \(V\) :유한차원인 기약표현
  • \(V=\oplus_{\lambda\in\mathbb{F}}V_{\lambda}\), \(V_{\lambda}=\{v\in V|Hv=\lambda v\}\)
  • \(\lambda\in \mathbb{F}\) 에 대하여, highest weight vector \(v_0\) 를 정의
    \(Ev_0=0\)
    \(Hv_0=\lambda v_0\)
  • \(v_j:=\frac{F^j}{j!}v_0\) 로 정의하면, 다음 관계가 만족된다
    \(H v_j=(\lambda -2j)v_j\)
    \(F v_j=(j+1)v_{j+1}\)
    \(E v_j=(\lambda -j+1)v_{j-1}\)
  • \(\{v^j|j\geq 0\}\) 가 생성하는 벡터공간이 유한차원인 L-모듈이 되려면, \(\lambda\in\mathbb{Z}, \lambda\geq 0\) 이 만족되어야 한다

 

 

유한차원 기약표현의 분류

  • 각 \(m\geq 0\) 에 대하여, m+1 차원 기약표현 \(V(m)\)가 존재한다
  • 모든 유한차원 기약표현 \(V\)에 대하여 적당한 \(m\geq 0\)에 대하여 \(V\simeq V(m)\)

 

 

파울리 행렬

  • 파울리 행렬의 선형결합으로 리대수 $\mathfrak{sl}(2)$ 의 원소를 표현할 수 있으며, 특별히 생성원 $E,F$는 raising and lowering 연산자로 불리며 다음과 같이 표현된다 $$H=\sigma_{z}=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}$$ $$E=\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}$$ $$F=\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}$$ $$[\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}$$

 

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트