모든 자연수의 합과 리만제타함수

수학노트
Pythagoras0 (토론 | 기여)님의 2013년 3월 21일 (목) 01:56 판
둘러보기로 가기 검색하러 가기

개요

\[\zeta(-1)= -\frac{1}{12}\]

  • 다음과 같은 (물리적?) 해석이 가능

\[\sum_{n=1}^{\infty} n =1 + 2 + 3 + 4 + 5 + \cdots = -\frac{1}{12}\]

 

 

증명

리만 제타함수가 만족시키는 다음 함수방정식을 이용한다.

\[\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)\]

\[\zeta(s)=2(2\pi)^{s-1}\Gamma(1-s)\sin(\frac{\pi s}{2})\zeta(1-s)\]

여기에 \(s=-1\) 을 대입하면, 다음을 얻는다.

\[\zeta(-1)=2(2\pi)^{-2}\Gamma(2)\sin(-\frac{\pi}{2})\zeta(2)=\frac{2}{4\pi^2}(-1)\frac{\pi^2}{6}=-\frac{1}{12}\]. ■

 

 

 

물리학적(?) 증명

보조정리

\[1-2+3 -4 +5-6+\cdots = \frac{1}{4}\]

(증명)
테일러정리에 의하면,

\[x-2 x^2+3 x^3-4 x^4+\cdots = \frac{x}{(1+x)^2}\]

본래는 양변에 x=1을 넣는 것이 금지되어 있으나, 위에서 물리학이라고 했으므로 괜찮음.
그러므로,

\[S=1+2+3+4+\cdots\]

\[2S=2+4+6+8+\cdots\]

\[4S=2(2+4+6+8+\cdots)\]

 

 

그러므로,

\[1-2+3-4+5-6+\cdots+4S=1+2+3+4+5+6+\cdots = S\]

따라서,

\[-3S=1-2+3-4+5-6+\cdots\]

\[\sum_{n=1}^{\infty}n=1+2+3+4+\cdots = \frac{-1}{12}\]

 

조금만 수정하면, 제대로 된 증명이 되도록 할 수 있음.

 

 

관련된 항목들

 

 

사전 형태의 자료

 

 

매스매티카 파일 및 계산 리소스

 

 

리뷰논문, 에세이, 강의노트

 

 

 

블로그