리만 제타 함수

수학노트
(리만제타함수에서 넘어옴)
이동: 둘러보기, 검색

개요

  • 복소수 $\Re(s)>1$에 대하여 다음과 같은 급수로 복소함수를 정의

\[\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}\]

  • 이렇게 실수부가 1보다 큰 복소수 영역에서 급수로 정의된 함수를 해석적확장을 통해, 복소평면 전체에서 정의된 함수를 정의할 수 있음.
  • 그렇게 복소수 전체에서 정의된 함수를 리만의 제타함수라고 부름.
  • 리만가설은 리만제타함수의 해에 관련된 미해결문제.
  • 정수론에서 소수의 분포와 관련한 정보를 담고 있는 중요한 함수
  • 이 함수를 이해하는 좀더 일반적인 이론적 틀에 대해서는 L-함수, 제타함수와 디리클레 급수 항목을 참조



해석적확장 (analytic continuation)

  • 자코비 세타함수를 이용하여, 리만제타함수를 복소평면 전체로 확장할 수 있음.\[\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}\]
  • 감마함수\[\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}\] 를 이용하면, \[\int_0^\infty e^{-\pi n^2t} t^{\frac{s}{2}} \frac{dt}{t} = {\pi}^{-\frac{s}{2}}\Gamma(\frac{s}{2})\frac{1}{n^s}\]
  • 형식적으로는 다음과 같은 적분에 의해, 리만제타함수를 얻을 수 있음.

\[\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)= \int_0^\infty (\frac{\theta(it)-1}{2})t^{\frac{s}{2}} \frac{dt}{t}\]

  • 그러나 위의 적분은 모든 s에 대하여 수렴하지 않음. 따라서 다음과 같이 수정하여, 적분이 모든 s에 대하여 정의되도록 함.

\[\xi(s)=\pi^{-s/2}\Gamma(s/2)\zeta(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}\]

여기서는 자코비 세타함수의 성질 \[\theta(iy)=\frac{1}{\sqrt{y}}\theta(\frac{i}{y})\] 이 사용됨.


리만제타함수의 함수방정식

  • 리만제타함수는 \(s=\frac{1}{2}\) 에 대하여 대칭성을 가지고, 그에 따른 함수방정식을 만족시킴.\[\xi(s) = \xi(1 - s)\] 즉,\[\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)\]
증명

자코비 세타함수의 모듈라 성질을 사용하면, \[\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t}= \int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}\]

이므로, \(\xi(s)\) 의 정의를 이용하면, \[\xi(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}+\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}\]

를 얻는다.

이 식에서 \(s \leftrightarrow 1-s\) 는 우변을 변화시키지 않음므로 함수방정식 \(\xi(s) = \xi(1 - s)\)을 얻는다. ■


복소함수로서의 리만제타함수

  • meromorphic function
  • 1에서 pole 을 가지며 로랑급수 전개는 다음과 같다\[\zeta(s)=\frac{1}{s-1}+\gamma+O((s-1))\]
  • 더 정확히는\[\zeta(s)=\frac{1}{s-1}+\sum_{n=0}^\infty \frac{(-1)^n}{n!} \gamma_n \; (s-1)^n\]

여기서 \(\gamma_n\)은 스틸체스 상수


리만가설



special values


메모

관련된 학부 과목과 미리 알고 있으면 좋은 것들



관련된 항목들



수학용어번역

  • analytic continuation 해석적 접속
  • continuation 연속
  • continuation method 연속법
  • direct analytic continuation 직접해석접속


관련도서



리뷰, 에세이, 강의노트


사전형태의 자료


관련링크와 웹페이지


블로그