"역제곱 벡터장"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 +
 +
* [[역제곱 벡터장]]
  
 
 
 
 
17번째 줄: 19번째 줄:
 
 
 
 
  
<h5>적분</h5>
+
<h5>적분의 응용</h5>
  
 
* 3차원에서의 벡터장을 생각하자
 
* 3차원에서의 벡터장을 생각하자
 
*  바깥쪽으로 향이 주어진 단위구면 S에 대하여, 다음을 얻는다<br><math>\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=4\pi</math><br>
 
*  바깥쪽으로 향이 주어진 단위구면 S에 대하여, 다음을 얻는다<br><math>\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=4\pi</math><br>
*  (정리)<br><math>\nabla\times\mathbf{G}=\mathbf{F}</math> 를 만족시키는 벡터장 <math>\mathbf{G}</math>가 존재하지 않는다<br> (증명)<br><math>\nabla\times\mathbf{G}=\mathbf{F}</math> 를 만족시키는 벡터장 <math>\mathbf{G}</math> 를 가정하자.<br>[[스토크스 정리]] 를 적용하면, <math>\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=\iint_S\ (\nabla\times\mathbf{G})\cdot\,d\mathbf{S}=\int_{\partial S}\mathbf G\cdot d\mathbf{r}=0</math> 을 얻는다. 그러나<br><math>\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=4\pi</math> 이므로 모순. ■<br>  <br>  <br>  <br>  <br>
+
*  (정리)<br><math>\nabla\times\mathbf{G}=\mathbf{F}</math> 를 만족시키는 벡터장 <math>\mathbf{G}</math>가 존재하지 않는다<br> (증명)<br><math>\nabla\times\mathbf{G}=\mathbf{F}</math> 를 만족시키는 벡터장 <math>\mathbf{G}</math> 를 가정하자.<br>[[스토크스 정리]] 를 적용하면, <math>\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=\iint_S\ (\nabla\times\mathbf{G})\cdot\,d\mathbf{S}=\int_{\partial S}\mathbf G\cdot d\mathbf{r}=0</math> 을 얻는다. 그러나<br><math>\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=4\pi</math> 이므로 모순. ■<br>
  
 
 
 
 
49번째 줄: 51번째 줄:
  
 
<h5>관련된 항목들</h5>
 
<h5>관련된 항목들</h5>
 +
 +
* [[각원소 벡터장|각원소벡터장]]
  
 
 
 
 
72번째 줄: 76번째 줄:
 
<h5>매스매티카 파일 및 계산 리소스</h5>
 
<h5>매스매티카 파일 및 계산 리소스</h5>
  
*  
+
* https://docs.google.com/file/d/0B8XXo8Tve1cxS1hjenlnX0xNeFU/edit
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* http://functions.wolfram.com/
87번째 줄: 91번째 줄:
 
<h5>사전 형태의 자료</h5>
 
<h5>사전 형태의 자료</h5>
  
* http://ko.wikipedia.org/wiki/
+
* [http://ko.wikipedia.org/wiki/%EC%A4%91%EB%A0%A5%EC%9E%A5 http://ko.wikipedia.org/wiki/중력장]
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]

2012년 5월 3일 (목) 14:00 판

이 항목의 수학노트 원문주소

 

 

개요
  • n 차원에서 정의된 벡터장
    \(\mathbf{F}(\mathbf{r})=\frac{\mathbf{r}}{|\mathbf{r}|^3}\)
  • 중력장과 전자기장에서 중요한 역할
  • \(\phi(\mathbf{r})=-\frac{1}{|\mathbf{r}|}\)  를 포텐셜로 가짐
  • \(\nabla\times\mathbf{F}=0\)
  • \(\nabla\cdot\mathbf{F}=0\)

 

 

적분의 응용
  • 3차원에서의 벡터장을 생각하자
  • 바깥쪽으로 향이 주어진 단위구면 S에 대하여, 다음을 얻는다
    \(\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=4\pi\)
  • (정리)
    \(\nabla\times\mathbf{G}=\mathbf{F}\) 를 만족시키는 벡터장 \(\mathbf{G}\)가 존재하지 않는다
    (증명)
    \(\nabla\times\mathbf{G}=\mathbf{F}\) 를 만족시키는 벡터장 \(\mathbf{G}\) 를 가정하자.
    스토크스 정리 를 적용하면, \(\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=\iint_S\ (\nabla\times\mathbf{G})\cdot\,d\mathbf{S}=\int_{\partial S}\mathbf G\cdot d\mathbf{r}=0\) 을 얻는다. 그러나
    \(\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=4\pi\) 이므로 모순. ■

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서