"오일러-가우스 초기하함수2F1"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 28개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
* [[오일러-가우스 초기하함수2F1|오일러-가우스 초기하함수]]<br>
+
* 초기하급수:<math>\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1</math>
 +
여기서 <math>(a)_n=a(a+1)(a+2)...(a+n-1)</math>에 대해서는 [[포흐하머 (Pochhammer) 기호]] 항목 참조
 +
*  적분표현:<math>\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt</math>
 +
*  초기하급수의 해석적확장을 통해 얻어진 함수를 초기하함수라 함
 +
*  오일러, 가우스, 쿰머, 리만,슈워츠 등의 연구
  
 
+
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">개요</h5>
+
==초기하급수로 표현되는 함수의 예==
  
* 초기하급수<br><math>\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1</math><br> 여기서 <math>(a)_n=a(a+1)(a+2)...(a+n-1)</math>에 대해서는 [[Pochhammer 기호와 캐츠(Kac) 기호]] 항목 참조<br>
+
* 많은 special function 은 초기하함수의 파라메터를 변화시켜 얻어짐
*  적분표현<br><math>\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt</math><br>
+
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]:<math>K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math>
*  초기하급수의 해석적확장을 통해 얻어진 함수를 초기하함수라 함<br>
+
* [[제2종타원적분 E (complete elliptic integral of the second kind)]]:<math>E(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},-\frac{1}{2};1;k^2)</math>
*  오일러, 가우스, 쿰머, 리만,슈워츠 등의 연구<br>
 
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">초기하급수로 표현되는 함수의 예</h5>
+
==초기하 미분방정식==
  
* 많은 special function 은 초기하함수의 파라미터를 변화시켜 얻어짐<br>[[타원적분]]<br><math>K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math><br><math>E(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},-\frac{1}{2};1;k^2)</math><br>
+
* <math>w(z)=\,_2F_1(a,b;c;z)</math> 는 다음 피카드-Fuchs 형태의 미분방정식의 해가 된다
 +
:<math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math>
 +
*  이 미분방정식을 [[초기하 미분방정식(Hypergeometric differential equations)]] 이라 부른다
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">피카드-Fuchs 미분방정식</h5>
+
  
* <math>\,_2F_1(a,b;c;z)</math> 는 다음 미분방정식의 해가 된다<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br>
+
==오일러의 변환 공식==
* [[초기하 미분방정식(Hypergeometric differential equations)]] 참조<br>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">오일러의 항등식</h5>
 
  
 
<math>_2F_1 (a,b;c;z) =  (1-z)^{-a} {}_2F_1 (a, c-b;c ; \frac{z}{z-1})</math>
 
<math>_2F_1 (a,b;c;z) =  (1-z)^{-a} {}_2F_1 (a, c-b;c ; \frac{z}{z-1})</math>
43번째 줄: 41번째 줄:
 
<math>_2F_1 (a,b;c;z) =  (1-z)^{c-a-b}{}_2F_1 (c-a, c-b;c ; z)</math>
 
<math>_2F_1 (a,b;c;z) =  (1-z)^{c-a-b}{}_2F_1 (c-a, c-b;c ; z)</math>
  
 
+
 
 
(증명)
 
  
 +
;증명
 
다음 적분표현을 활용
 
다음 적분표현을 활용
  
 
<math>\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt</math>
 
<math>\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt</math>
  
위의 우변에서 <math>t\to 1-t</math>, <math>t\to \frac{t}{1-z-tz}</math>, <math>t\to \frac{1-t}{1-tz}</math>의 변환을 이용하면 항등식이 얻어진다. ■
+
위의 우변에서 <math>t\to 1-t</math>, <math>t\to \frac{t}{1-z-tz}</math>, <math>t\to \frac{1-t}{1-tz}</math>의 변환을 이용하면 항등식이 얻어진다. ■
 
 
 
 
 
 
*  쿰머의 [[초기하 미분방정식(Hypergeometric differential equations)]]에 대한 24개의 해를 표현하는데 사용됨<br>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">contiguous 관계</h5>
 
 
 
*  두 초기하급수가 있을 때, 세 파라미터가 정수만큼 다른 경우 contiguous라 함<br>
 
*  예<br><math>_2F_1(a,b;c;z)</math>와 <math>_2F_1(a\pm1,b;c;z)</math><br><math>_2F_1(a,b;c;z)</math>와 <math>_2F_1(a1,b;c\pm1;z)</math><br>
 
* <math>_2F_1(a,b;c;z)</math>와 contiguous 관계를 갖는 두 초기하급수가 있을 때, 이 세 초기하급수 사이에는 a,b,c,z를 계수로 갖는 선형종속 관계가 성립<br><math>a(z-1)F (a + 1, b; c; z) + (2a-c-az + bz)F(a, b; c; z) + (c - a)F(a - 1, b; c; z) = 0</math><br><math>aF(a + 1, b; c; z) - (c - 1)F (a, b; c - 1; z) + (c - a - 1)F (a, b; c; z) = 0</math><br><math>aF(a + 1, b; c; z) - bF(a, b + 1; c; z) + (b - a)F(a, b; c; z) = 0</math><br>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">타원적분과 초기하급수</h5>
 
 
 
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]<br><math>K(k) = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n(\frac{1}{2})_n}{n!(1)_n}k^{2n} = \frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math> [[제1종타원적분 K (complete elliptic integral of the first kind)|]]<br>
 
 
 
(증명)
 
 
 
<math>K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}} = \int_0^{\frac{\pi}{2}}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n}{n!} k^{2n}\sin^{2n}\theta{d\theta}  </math>
 
 
 
<math>\int_0^{\frac{\pi}{2}}\sin^{2n}\theta{d\theta}=\frac{\pi}{2}\frac{(\frac{1}{2})_n}{(1)_n}</math> ([[#|감마함수]]) 이므로
 
 
 
<math>K(k) = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n(\frac{1}{2})_n}{n!(1)_n}k^{2n} = \frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">모듈라 함수와의 관계</h5>
 
 
 
* [[라마누잔과 파이]]<br>
 
 
 
 
 
 
 
'''[BB1998]'''[http://www.amazon.com/PI-AGM-Analytic-Computational-Complexity/dp/047131515X Pi and the AGM]
 
  
* Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998)
+
* http://mathworld.wolfram.com/EulersHypergeometricTransformations.html
 +
*  쿰머의 [[초기하 미분방정식(Hypergeometric differential equations)]]에 대한 24개의 해를 표현하는데 사용됨
  
179,180p
+
  
 
+
  
'''[Nes2002] 159p'''
+
==contiguous 관계==
  
 
+
* [[초기하함수 2F1의 contiguous 관계]]
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">슈워츠 s-함수</h5>
+
  
* 세 파라메터 a,b,c에 대한 초기하 미분방정식의 일차독립인 두 해의 비율로 얻어지는 함수
+
==타원적분과 초기하급수==
* <math>\alpha=1-c,\beta=b-a,\gamma=c-a-b</math> 로 두면, 상반평면을 <math>\alpha\pi,\beta\pi,\gamma\pi</math> 를 세 각으로 갖는 삼각형으로 보낸다<br>
 
*  역함수를 [[search?q=%EC%8A%88%EC%9B%8C%EC%B8%A0%20s-%ED%95%A8%EC%88%98&parent id=4754981|슈워츠 s-함수]]라 한다<br>
 
* [[맴돌이군이 유한인 초기하 미분방정식에 대한 슈바르츠 목록|맴돌이군이 유한인 초기하 미분방정식에 대한 슈워츠 목록]]<br>
 
  
 
+
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]:<math>K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math>
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">special values</h5>
+
  
*  Chu-Vandermonde 공식<br><math>\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}</math><br> 아래 가우스 공식에서 <math>a=-n</math>인 경우에 얻어진다<br>
+
==모듈라 함수와의 관계==
  
* 가우스 공식<br><math>\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}</math><br>
+
* [[라마누잔과 파이]]
*  위의 두 식에 대해서는 [[초기하급수의 합공식|초기하 급수의 합공식]]<br>
+
* '''[BB1998]'''[http://www.amazon.com/PI-AGM-Analytic-Computational-Complexity/dp/047131515X Pi and the AGM]
* [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분|렘니스케이트(lemniscate) 곡선과 타원적분]]<br><math>\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;\frac{1}{2})=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots</math><br>
+
* Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998) 179,180p
* http://mathworld.wolfram.com/HypergeometricFunction.html<br><math>_2F_1(\frac{1}{3},\frac{2}{3};\frac{5}{6};\frac{27}{32})=\frac{8}{5}</math><br><math>_2F_1(\frac{1}{4},\frac{1}{2};\frac{3}{4};\frac{80}{81})=\frac{9}{5}</math><br><math>_2F_1(\frac{1}{8},\frac{3}{8};\frac{1}{2};\frac{2400}{2401})=\frac{2}{3}\sqrt{7}</math><br><math>_2F_1(\frac{1}{6},\frac{1}{3};\frac{1}{2};\frac{25}{27})=\frac{3}{4}\sqrt{3}</math><br><math>_2F_1(\frac{1}{6},\frac{1}{2};\frac{2}{3};\frac{125}{128})=\frac{4}{3}\sqrt[6]2</math><br><math>_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{1323}{1331})=\frac{3}{4}\sqrt[4]{11}</math><br><math>_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{121}{125})=\frac{\sqrt[6]{2}\sqrt[4]{15}}{4\sqrt{\pi}}\frac{\Gamma(\frac{1}{3})^3}{\Gamma(\frac{1}{4})^2}(1+\sqrt{3})</math><br>
+
* '''[Nes2002] 159p'''
  
 
+
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">재미있는 사실</h5>
+
==슈워츠 s-함수==
  
 
+
* [[슈바르츠 삼각형 함수|슈워츠 s-함수]]
  
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
+
  
 
+
  
 
+
==special values==
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">역사</h5>
+
*  Chu-Vandermonde 공식:<math>\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}</math> 아래 가우스 공식에서 <math>a=-n</math>인 경우에 얻어진다
  
* [[수학사연표 (역사)|수학사연표]]
+
* 가우스 공식:<math>\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}</math>
 +
*  위의 두 식에 대해서는 [[초기하급수의 합공식|초기하 급수의 합공식]]
 +
* [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분|렘니스케이트(lemniscate) 곡선과 타원적분]]:<math>\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;\frac{1}{2})=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots</math>
 +
* http://mathworld.wolfram.com/HypergeometricFunction.html:<math>_2F_1(\frac{1}{3},\frac{2}{3};\frac{5}{6};\frac{27}{32})=\frac{8}{5}</math>:<math>_2F_1(\frac{1}{4},\frac{1}{2};\frac{3}{4};\frac{80}{81})=\frac{9}{5}</math>:<math>_2F_1(\frac{1}{8},\frac{3}{8};\frac{1}{2};\frac{2400}{2401})=\frac{2}{3}\sqrt{7}</math>:<math>_2F_1(\frac{1}{6},\frac{1}{3};\frac{1}{2};\frac{25}{27})=\frac{3}{4}\sqrt{3}</math>:<math>_2F_1(\frac{1}{6},\frac{1}{2};\frac{2}{3};\frac{125}{128})=\frac{4}{3}\sqrt[6]2</math>:<math>_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{1323}{1331})=\frac{3}{4}\sqrt[4]{11}</math>:<math>_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{121}{125})=\frac{\sqrt[6]{2}\sqrt[4]{15}}{4\sqrt{\pi}}\frac{\Gamma(\frac{1}{3})^3}{\Gamma(\frac{1}{4})^2}(1+\sqrt{3})</math>
  
 
+
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">메모</h5>
+
==역사==
  
 
+
* [[수학사 연표]]
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련된 항목들</h5>
+
  
* [[periods]]<br>
+
==관련된 항목들==
* [[무리수와 초월수]]<br>
+
* [[주기 (period]]
* [[오일러 베타적분(베타함수)|오일러 베타적분]]<br>
+
* [[무리수와 초월수]]
* [[직교다항식과 special functions|Special functions]]<br>
+
* [[오일러 베타적분(베타함수)|오일러 베타적분]]
* [[맴돌이군과 미분방정식]]<br>
+
* [[직교다항식과 special functions|Special functions]]
 +
* [[맴돌이군과 미분방정식]]
  
 
 
  
 
 
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">수학용어번역</h5>
+
==매스매티카 파일 및 계산 리소스==
  
* http://www.google.com/dictionary?langpair=en|ko&q=
+
* https://docs.google.com/file/d/0B8XXo8Tve1cxWFFlaHc2OVdQLXc/edit
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
 
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* [http://ko.wikipedia.org/wiki/%EC%B4%88%EA%B8%B0%ED%95%98%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/초기하함수]
 
* [http://ko.wikipedia.org/wiki/%EC%B4%88%EA%B8%B0%ED%95%98%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/초기하함수]
185번째 줄: 136번째 줄:
 
* http://en.wikipedia.org/wiki/hypergeometric_differential_equation
 
* http://en.wikipedia.org/wiki/hypergeometric_differential_equation
 
* http://en.wikipedia.org/wiki/Frobenius_solution_to_the_hypergeometric_equation
 
* http://en.wikipedia.org/wiki/Frobenius_solution_to_the_hypergeometric_equation
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">expository articles</h5>
+
  
* [http://www.jstor.org/stable/2975319 On the Kummer Solutions of the Hypergeometric Equation]<br>
+
==리뷰논문, 에세이, 강의노트==
** Reese T. Prosser, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543   
+
* '''[Nes2002]'''[http://books.google.com/books?id=Up-XxkiTtdsC&pg=PA148&lpg=PA148&dq=On+the+Algebraic+Independence+of+Numbers+Yu.V.+Nesterenko&source=bl&ots=yOVhiH5ukL&sig=x0GqVIluMqw-_Iaf3tXtKxam50Q&hl=ko&ei=KIwRTPiwB4rcNcSE8ccF&sa=X&oi=book_result&ct=result&resnum=3&ved=0CCQQ6AEwAg#v=onepage&q=On%20the%20Algebraic%20Independence%20of%20Numbers%20Yu.V.%20Nesterenko&f=false On the Algebraic Independence of Numbers]
 
+
**  Yu.V. Nesterenko, in <em style="">A panorama in number theory, or, The view from Baker's garden</em> (by Alan Baker,Gisbert Wüstholz), 2002
* [http://dx.doi.org/10.1070/RM1990v045n01ABEH002325 Ramanujan and hypergeometric and basic hypergeometric series]<br>
+
* [http://www.jstor.org/stable/2975319 On the Kummer Solutions of the Hypergeometric Equation]
 +
** Reese T. Prosser, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543 
 +
* [http://dx.doi.org/10.1070/RM1990v045n01ABEH002325 Ramanujan and hypergeometric and basic hypergeometric series]
 
** R Askey 1990 Russ. Math. Surv. 45 37-86
 
** R Askey 1990 Russ. Math. Surv. 45 37-86
  
 
+
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련논문</h5>
+
==관련논문==
 
+
* http://arxiv.org/abs/1511.00020
* [http://dx.doi.org/10.1016/j.cam.2005.05.016 On the contiguous relations of hypergeometric series]<br>
+
* Schrenk, K. J., and J. D. Stevenson. “Numerical Evaluation of the Gauss Hypergeometric Function: Implementation and Application to Schramm-Loewner Evolution.” arXiv:1502.05624 [cond-Mat, Physics:physics], February 19, 2015. http://arxiv.org/abs/1502.05624.
 +
* [http://dx.doi.org/10.1016/j.cam.2005.05.016 On the contiguous relations of hypergeometric series]
 
** Medhat A. Rakha, Adel K. Ibrahim, Journal of Computational and Applied Mathematics, Volume 192, Issue 2, 1 August 2006, Pages 396-410
 
** Medhat A. Rakha, Adel K. Ibrahim, Journal of Computational and Applied Mathematics, Volume 192, Issue 2, 1 August 2006, Pages 396-410
* [http://people.math.jussieu.fr/%7Emiw/articles/pdf/TranscendencePeriods.pdf Transcendence of periods: the state of the art.]<br>
+
* [http://people.math.jussieu.fr/%7Emiw/articles/pdf/TranscendencePeriods.pdf Transcendence of periods: the state of the art.]
**  M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463.<br>
+
**  M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463.
* [http://dx.doi.org/10.1016/S0022-314X%2803%2900042-8 Exceptional sets of hypergeometric series]<br>
+
* [http://dx.doi.org/10.1016/S0022-314X%2803%2900042-8 Exceptional sets of hypergeometric series]
**  Natália Archinard, Journal of Number Theory Volume 101, Issue 2, August 2003, Pages 244-269<br>
+
**  Natália Archinard, Journal of Number Theory Volume 101, Issue 2, August 2003, Pages 244-269
* '''[Nes2002]'''[http://books.google.com/books?id=Up-XxkiTtdsC&pg=PA148&lpg=PA148&dq=On+the+Algebraic+Independence+of+Numbers+Yu.V.+Nesterenko&source=bl&ots=yOVhiH5ukL&sig=x0GqVIluMqw-_Iaf3tXtKxam50Q&hl=ko&ei=KIwRTPiwB4rcNcSE8ccF&sa=X&oi=book_result&ct=result&resnum=3&ved=0CCQQ6AEwAg#v=onepage&q=On%20the%20Algebraic%20Independence%20of%20Numbers%20Yu.V.%20Nesterenko&f=false On the Algebraic Independence of Numbers]<br>
+
* Thorsley, Michael D., and Marita C. Chidichimo. 2001. “An Asymptotic Expansion for the Hypergeometric Function 2F1(a,b;c;x).” Journal of Mathematical Physics 42 (4) (April 1): 1921–1930. doi:doi:10.1063/1.1353185. http://jmp.aip.org/resource/1/jmapaq/v42/i4/p1921_s1
**  Yu.V. Nesterenko, in <em style="">A panorama in number theory, or, The view from Baker's garden</em> (by Alan Baker,Gisbert Wüstholz), 2002<br>
+
* [http://dx.doi.org/10.1017/S0305004102005923 Special values of the hypergeometric series III]
 
+
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2002), 133 : 213-222
* [http://dx.doi.org/10.1017/S0305004102005923 Special values of the hypergeometric series III]<br>
+
* [http://dx.doi.org/10.1017/S0305004101005254 Special values of the hypergeometric series II]
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2002), 133 : 213-222
+
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2001), 131 : 309-319
 
+
*  Special values of the hypergeometric series
* [http://dx.doi.org/10.1017/S0305004101005254 Special values of the hypergeometric series II]<br>
+
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (1991) volume: 109 issue: 2 page: 257
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2001), 131 : 309-319
+
* [http://dx.doi.org/10.1007/BF01393999 Werte hypergeometrischer funktionen]
*  Special values of the hypergeometric series<br>
+
** Jürgen Wolfart, Inventiones Mathematicae Volume 92, Number 1 / 1988년 2월
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (1991)  volume: 109  issue: 2  page: 257
 
 
 
* [http://dx.doi.org/10.1007/BF01393999 Werte hypergeometrischer funktionen]<br>
 
** Jürgen Wolfart, Inventiones Mathematicae Volume 92, Number 1 / 1988년 2월
 
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/10.1007/978-3-7643-8284-1_2
 
 
 
 
 
 
 
 
 
 
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련도서</h5>
 
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련기사</h5>
 
  
*  네이버 뉴스 검색 (키워드 수정)<br>
+
[[분류:리만곡면론]]
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
+
[[분류:특수함수]]
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
  
 
+
==노트==
 +
===말뭉치===
 +
# This paper introduces the hypergeo package of R routines, for numerical calculation of hypergeometric functions.<ref name="ref_cfa2d4d9">[https://cran.r-project.org/web/packages/hypergeo/vignettes/hypergeometric.pdf Numerical evaluation of the gauss hypergeometric]</ref>
 +
# The package is focussed on ecient and accurate evaluation of the hypergeometric function over the whole of the complex plane within the constraints of xed-precision arithmetic.<ref name="ref_cfa2d4d9" />
 +
# 2 Numerical evaluation of the Gauss hypergeometric function with the hypergeo package when dened.<ref name="ref_cfa2d4d9" />
 +
# Writing a, b, c for the two upper and one lower argument respectively, the resulting function 2F1 (a, b; c; z) is known as the hypergeometric function.<ref name="ref_cfa2d4d9" />
 +
# For systematic lists of some of the many thousands of published identities involving the hypergeometric function, see the reference works by Erdélyi et al.<ref name="ref_2c109dda">[https://en.wikipedia.org/wiki/Hypergeometric_function Hypergeometric function]</ref>
 +
# Elliptic modular functions can sometimes be expressed as the inverse functions of ratios of hypergeometric functions whose arguments a, b, c are 1, 1/2, 1/3, ... or 0.<ref name="ref_2c109dda" />
 +
# We give a basic introduction to the properties of Gauss hypergeometric functions, with an emphasis on the determination of the monodromy group of the Gaussian hyperegeo- metric equation.<ref name="ref_1fc1f143">[https://xxyyzz.cc/beukers%20hypergeometric%20functions.pdf Gauss’ hypergeometric function]</ref>
 +
# Initially this document started as an informal introduction to Gauss hypergeometric functions for those who want to have a quick idea of some main facts on hypergeometric functions.<ref name="ref_1fc1f143" />
 +
# To confuse matters even more, the term "hypergeometric function" is less commonly used to mean closed form, and "hypergeometric series" is sometimes used to mean hypergeometric function.<ref name="ref_f254229c">[https://mathworld.wolfram.com/HypergeometricFunction.html Hypergeometric Function -- from Wolfram MathWorld]</ref>
 +
# The hypergeometric functions are solutions to the hypergeometric differential equation, which has a regular singular point at the origin.<ref name="ref_f254229c" />
 +
# Many functions of mathematical physics can be expressed as special cases of the hypergeometric functions.<ref name="ref_f254229c" />
 +
# We consider the asymptotic behavior of the Gauss hypergeometric function when several of the parameters a,b,c are large.<ref name="ref_3534f672">[https://www.sciencedirect.com/science/article/pii/S0377042702006271 Large parameter cases of the Gauss hypergeometric function]</ref>
 +
# Computes the Gauss hypergeometric function 2F1(a,b;c;z) and its derivative for real z, z<1 by integrating the defining differential equation using the Matlab differential equation solver ode15i.<ref name="ref_5ff86cd1">[https://www.mathworks.com/matlabcentral/fileexchange/21444-gauss-hypergeometric-function Gauss Hypergeometric Function]</ref>
 +
# The major development of the theory of hypergeometric function was carried out by Gauss and published in his famous work of 1812.<ref name="ref_673f6451">[https://core.ac.uk/download/pdf/82050565.pdf Computers and mathematics with applications 61 (2011) 620–629]</ref>
 +
# Almost all of the elementary functions of Mathematics are either hypergeometric, ratios of hypergeometric functions or limiting cases of a hypergeometric series.<ref name="ref_673f6451" />
 +
# Two hypergeometric functions with the same argument z are contiguous if their parameters a, b and c differ by integers.<ref name="ref_673f6451" />
 +
# A contiguous relation between any three contiguous hypergeometric functions can be found by combining linearly a sequence of Gauss contiguous relations.<ref name="ref_673f6451" />
 +
# In this course we will study multivariate hypergeometric functions in the sense of Gelfand, Kapranov, and Zelevinsky (GKZ systems).<ref name="ref_57bea61a">[https://people.math.umass.edu/~cattani/hypergeom_lectures.pdf Three lectures on hypergeometric functions]</ref>
 +
# These functions generalize the classical hypergeometric functions of Gauss, Horn, Appell, and Lauricella.<ref name="ref_57bea61a" />
 +
# We end with a brief discussion of the classication problem for rational hypergeometric functions.<ref name="ref_57bea61a" />
 +
# For one-variable hypergeometric functions this interplay has been well understood for several decades.<ref name="ref_57bea61a" />
 +
# Abstract The two most commonly used hypergeometric functions are the conflu- ent hypergeometric function and the Gauss hypergeometric function.<ref name="ref_3d1e3bde">[https://people.maths.ox.ac.uk/porterm/papers/hypergeometric-final.pdf Numer algor]</ref>
 +
# Except for specific situations, computing hypergeometric functions is difficult in practice.<ref name="ref_3d1e3bde" />
 +
# (a)j (b)j zj j ! , which is also commonly denoted by M(a; b; z) and is itself often called the confluent hypergeometric function.<ref name="ref_3d1e3bde" />
 +
# The function 2F1(a, b; c; z) is commonly denoted by F (a, b; c; z) and is also fre- quently called the Gauss hypergeometric function.<ref name="ref_3d1e3bde" />
 +
# We nd that, for both the conuent and Gauss hypergeometric functions, there is no simple answer to the problem of their computation, and dierent methods are optimal for dierent parameter regimes.<ref name="ref_89cba934">[https://www.math.ucla.edu/~mason/research/pearson_final.pdf Computation of]</ref>
 +
# 3.3 Writing the conuent hypergeometric function as a single fraction . . . . . .<ref name="ref_89cba934" />
 +
# 4.3 Writing the Gauss hypergeometric function as a single fraction .<ref name="ref_89cba934" />
 +
# The computation of the hypergeometric function pFq, a special function encountered in a variety of applications, is frequently sought.<ref name="ref_89cba934" />
 +
# Returns hyp2f1 scalar or ndarray The values of the gaussian hypergeometric function.<ref name="ref_1000609c">[https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hyp2f1.html scipy.special.hyp2f1 — SciPy v1.6.1 Reference Guide]</ref>
 +
# Using (41) and subordination property, we have thatBy adopting (13) and (64), we obtainApplying hypergeometric function (59), we obtain the upper bound for the case .<ref name="ref_8523a4ab">[https://www.researchgate.net/publication/267000586_An_integral_representation_of_some_hypergeometric_functions (PDF) An integral representation of some hypergeometric functions]</ref>
 +
# Recently, there has been a clear interest on Bessel and hypergeometric functions from the point of view of geometric function theory.<ref name="ref_8523a4ab" />
 +
# A hypergeometric function is the sum of a hypergeometric series, which is dened as follows.<ref name="ref_0f9b4ff4">[https://homepage.tudelft.nl/11r49/documents/wi4006/hyper.pdf Hypergeometric functions]</ref>
 +
# When one of the numerator parameters ai equals N , where N is a nonnegative integer, the hypergeometric function is a polynomial in z (see below).<ref name="ref_0f9b4ff4" />
 +
# Sometimes the most general hypergeometric function pFq is called a generalized hypergeo- metric function.<ref name="ref_0f9b4ff4" />
 +
# For the hypergeometric function 2F1 we have an integral representation due to Euler: Theorem 1.<ref name="ref_0f9b4ff4" />
 +
# This generally speeds up evaluation by producing a hypergeometric function of lower order.<ref name="ref_d5ee5555">[https://mpmath.org/doc/current/functions/hypergeometric.html Hypergeometric functions — mpmath 1.2.0 documentation]</ref>
 +
# Euler introduced the power series expansion of the form: where a, b, c are rational functions and F(a, b, c, z) is called the hypergeometric function.<ref name="ref_1c0038b8">[https://iopscience.iop.org/book/978-0-7503-1496-1/chapter/bk978-0-7503-1496-1ch1 Hypergeometric series]</ref>
 +
# The hypergeometric function takes a prominent position amongst the world of standard mathematical functions used in both pure and applied mathematics.<ref name="ref_1c0038b8" />
 +
# Gauss was aware of the multi-valuedness of the hypergeometric functions, known in recent times as the monodromy problem.<ref name="ref_1c0038b8" />
 +
# The modern notation for the Gauss hypergeometric function is according to Barnes (1908).<ref name="ref_1c0038b8" />
 +
# The classification recovers the classical transformations of degree 2, 3, 4, 6, and finds other transformations of some special classes of the Gauss hypergeometric function.<ref name="ref_627f557f">[https://ui.adsabs.harvard.edu/abs/2004math......8269V/abstract Algebraic transformations of Gauss hypergeometric functions]</ref>
 +
# This paper claims that the natural logarithm can be represented by the Gaussian hypergeometric function.<ref name="ref_90def12e">[https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3037643 Proof that the Natural Logarithm Can Be Represented by the Gaussian Hypergeometric Function by Christopher Paul Nofal :: SSRN]</ref>
 +
# We establish two quadratic transformations for Gauss hypergeometric function in terms of nite summation of combination of two Clausen hypergeometric functions.<ref name="ref_fc989b75">[http://www.pvamu.edu/aam/wp-content/uploads/sites/182/2020/04/SI0606_AAM_MQ_MK_031520_Published_040620.pdf Special issue no. 6 (april 2020), pp. 71 – 86]</ref>
 +
# Further, we have generalized our quadratic transformations in terms of general double series identities as well as in terms of reduction formulas for Kamp de Friets double hypergeometric function.<ref name="ref_fc989b75" />
 +
# The Hypergeometric functions of two variables was introduced by Appell (1880) and Lauricella (1893) generalized them to several variables.<ref name="ref_fc989b75" />
 +
# It is interesting to mention here that the results are very important for the application point of view, whenever hypergeometric functions reduce to gamma functions.<ref name="ref_fc989b75" />
 +
# In this sequel, using the same technique, we establish certain integral transforms and fractional integral formulas for the generalized Gauss hypergeometric functions .<ref name="ref_8691ba14">[https://www.hindawi.com/journals/aaa/2014/735946/ Certain Integral Transform and Fractional Integral Formulas for the Generalized Gauss Hypergeometric Functions]</ref>
 +
# For , and , we have where the , a special case of the generalized hypergeometric function (10), is the Gauss hypergeometric function.<ref name="ref_8691ba14" />
 +
# Further, if we set and in Theorems 1 to 5 or make use of the result (8), we obtain various integral transforms and fractional integral formulas for the Gauss hypergeometric function .<ref name="ref_8691ba14" />
 +
# This a hypergeometric equation with constants a, b and c dened by F = c, G = (a + b + 1) and H = ab and can therefore be solved near t = 0 and t = 1 in terms of the hypergeometric function.<ref name="ref_fa3ce4ee">[https://www.bits-pilani.ac.in/uploads/hypergeometric.pdf Gauss’s hypergeometric equation]</ref>
 +
# Problems: Find the general solution of each of the following dierential equations near the indicated singular point in terms of hypergeometric function.<ref name="ref_fa3ce4ee" />
 +
# However, the hypergeometric function is defined over the whole of the complex plane, so analytic continuation may be used if appropriate cut lines are used.<ref name="ref_aa8484f8">[https://rdrr.io/cran/hypergeo/man/hypergeo.html hypergeo: The hypergeometric function in hypergeo: The Gauss Hypergeometric Function]</ref>
 +
# Gausss hypergeometric function gives a modular parame- terization of period integrals of elliptic curves in Legendre normal form E() : y2 = x(x 1)(x ).<ref name="ref_7f2fb368">[https://uva.theopenscholar.com/files/ken-ono/files/128.pdf Gauss’s 2f1 hypergeometric function and the]</ref>
 +
# Legendre elliptic curves, hypergeometric functions.<ref name="ref_7f2fb368" />
 +
# Hypergeometric functions are rarely in a form in which these formulae can be applied directly.<ref name="ref_e330e8bc">[https://carma.newcastle.edu.au/resources/jon/Preprints/Papers/Submitted%20Papers/Walks/Papers/gen-contiguity.pdf J.  phys. a:  math. gen. 21 (1988)  1983-1998.  printed  in  the  u k  ]</ref>
 +
# Writing sums as hypergeometric functions has the great advantage of simplifying manipulation by computer algebraic methods.<ref name="ref_e330e8bc" />
 +
# It is assumed that the hypergeometric functions are convergent and do not contain negative integers in the bottom parameter list.<ref name="ref_e330e8bc" />
 +
# A particular solution of Gausss hypergeometric differential equation (1) is known as Gausss hypergeometric function or simply hypergeometric function.<ref name="ref_d72c50eb">[http://182.18.165.51/Fac_File/STUDY182@342556.pdf  ]</ref>
 +
# 2 ​ F 1 ​ ( a , b , c , z ) Regularized Gauss hypergeometric function RisingFactorial ( z ) k \left(z\right)_{k} ( z ) k ​ Rising factorial Pow a b {a}^{b} a b Power Factorial n ! n !<ref name="ref_4a0c664f">[https://fungrim.org/topic/Gauss_hypergeometric_function/ Gauss hypergeometric function]</ref>
 +
# The hypergeometric functions are solutions to the Hypergeometric Differential Equation, which has a Regular Singular Point at the Origin.<ref name="ref_5d632c1c">[https://archive.lib.msu.edu/crcmath/math/math/h/h445.htm Hypergeometric Function]</ref>
  
 
+
===소스===
 +
<references />
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">블로그</h5>
 
  
*  구글 블로그 검색<br>
+
==메타데이터==
** http://blogsearch.google.com/blogsearch?q=
+
===위키데이터===
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
* ID :  [https://www.wikidata.org/wiki/Q21028472 Q21028472]
* [http://math.dongascience.com/ 수학동아]
+
===Spacy 패턴 목록===
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
+
* [{'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}]
* [http://betterexplained.com/ BetterExplained]
+
* [{'LOWER': 'gaussian'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}]
 +
* [{'LOWER': 'ordinary'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}]

2021년 2월 23일 (화) 05:21 기준 최신판

개요

  • 초기하급수\[\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1\]

여기서 \((a)_n=a(a+1)(a+2)...(a+n-1)\)에 대해서는 포흐하머 (Pochhammer) 기호 항목 참조

  • 적분표현\[\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt\]
  • 초기하급수의 해석적확장을 통해 얻어진 함수를 초기하함수라 함
  • 오일러, 가우스, 쿰머, 리만,슈워츠 등의 연구



초기하급수로 표현되는 함수의 예



초기하 미분방정식

  • \(w(z)=\,_2F_1(a,b;c;z)\) 는 다음 피카드-Fuchs 형태의 미분방정식의 해가 된다

\[z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0\]




오일러의 변환 공식

\(_2F_1 (a,b;c;z) = (1-z)^{-a} {}_2F_1 (a, c-b;c ; \frac{z}{z-1})\)

\(_2F_1 (a,b;c;z) = (1-z)^{-b}{}_2F_1(c-a,b;c;\frac{z}{z-1})\)

\(_2F_1 (a,b;c;z) = (1-z)^{c-a-b}{}_2F_1 (c-a, c-b;c ; z)\)


증명

다음 적분표현을 활용

\(\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt\)

위의 우변에서 \(t\to 1-t\), \(t\to \frac{t}{1-z-tz}\), \(t\to \frac{1-t}{1-tz}\)의 변환을 이용하면 항등식이 얻어진다. ■



contiguous 관계



타원적분과 초기하급수



모듈라 함수와의 관계



슈워츠 s-함수



special values

  • Chu-Vandermonde 공식\[\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}\] 아래 가우스 공식에서 \(a=-n\)인 경우에 얻어진다
  • 가우스 공식\[\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\]
  • 위의 두 식에 대해서는 초기하 급수의 합공식
  • 렘니스케이트(lemniscate) 곡선과 타원적분\[\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;\frac{1}{2})=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\]
  • http://mathworld.wolfram.com/HypergeometricFunction.html\[_2F_1(\frac{1}{3},\frac{2}{3};\frac{5}{6};\frac{27}{32})=\frac{8}{5}\]\[_2F_1(\frac{1}{4},\frac{1}{2};\frac{3}{4};\frac{80}{81})=\frac{9}{5}\]\[_2F_1(\frac{1}{8},\frac{3}{8};\frac{1}{2};\frac{2400}{2401})=\frac{2}{3}\sqrt{7}\]\[_2F_1(\frac{1}{6},\frac{1}{3};\frac{1}{2};\frac{25}{27})=\frac{3}{4}\sqrt{3}\]\[_2F_1(\frac{1}{6},\frac{1}{2};\frac{2}{3};\frac{125}{128})=\frac{4}{3}\sqrt[6]2\]\[_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{1323}{1331})=\frac{3}{4}\sqrt[4]{11}\]\[_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{121}{125})=\frac{\sqrt[6]{2}\sqrt[4]{15}}{4\sqrt{\pi}}\frac{\Gamma(\frac{1}{3})^3}{\Gamma(\frac{1}{4})^2}(1+\sqrt{3})\]



역사



관련된 항목들


매스매티카 파일 및 계산 리소스



사전 형태의 자료



리뷰논문, 에세이, 강의노트



관련논문

노트

말뭉치

  1. This paper introduces the hypergeo package of R routines, for numerical calculation of hypergeometric functions.[1]
  2. The package is focussed on ecient and accurate evaluation of the hypergeometric function over the whole of the complex plane within the constraints of xed-precision arithmetic.[1]
  3. 2 Numerical evaluation of the Gauss hypergeometric function with the hypergeo package when dened.[1]
  4. Writing a, b, c for the two upper and one lower argument respectively, the resulting function 2F1 (a, b; c; z) is known as the hypergeometric function.[1]
  5. For systematic lists of some of the many thousands of published identities involving the hypergeometric function, see the reference works by Erdélyi et al.[2]
  6. Elliptic modular functions can sometimes be expressed as the inverse functions of ratios of hypergeometric functions whose arguments a, b, c are 1, 1/2, 1/3, ... or 0.[2]
  7. We give a basic introduction to the properties of Gauss hypergeometric functions, with an emphasis on the determination of the monodromy group of the Gaussian hyperegeo- metric equation.[3]
  8. Initially this document started as an informal introduction to Gauss hypergeometric functions for those who want to have a quick idea of some main facts on hypergeometric functions.[3]
  9. To confuse matters even more, the term "hypergeometric function" is less commonly used to mean closed form, and "hypergeometric series" is sometimes used to mean hypergeometric function.[4]
  10. The hypergeometric functions are solutions to the hypergeometric differential equation, which has a regular singular point at the origin.[4]
  11. Many functions of mathematical physics can be expressed as special cases of the hypergeometric functions.[4]
  12. We consider the asymptotic behavior of the Gauss hypergeometric function when several of the parameters a,b,c are large.[5]
  13. Computes the Gauss hypergeometric function 2F1(a,b;c;z) and its derivative for real z, z<1 by integrating the defining differential equation using the Matlab differential equation solver ode15i.[6]
  14. The major development of the theory of hypergeometric function was carried out by Gauss and published in his famous work of 1812.[7]
  15. Almost all of the elementary functions of Mathematics are either hypergeometric, ratios of hypergeometric functions or limiting cases of a hypergeometric series.[7]
  16. Two hypergeometric functions with the same argument z are contiguous if their parameters a, b and c differ by integers.[7]
  17. A contiguous relation between any three contiguous hypergeometric functions can be found by combining linearly a sequence of Gauss contiguous relations.[7]
  18. In this course we will study multivariate hypergeometric functions in the sense of Gelfand, Kapranov, and Zelevinsky (GKZ systems).[8]
  19. These functions generalize the classical hypergeometric functions of Gauss, Horn, Appell, and Lauricella.[8]
  20. We end with a brief discussion of the classication problem for rational hypergeometric functions.[8]
  21. For one-variable hypergeometric functions this interplay has been well understood for several decades.[8]
  22. Abstract The two most commonly used hypergeometric functions are the conflu- ent hypergeometric function and the Gauss hypergeometric function.[9]
  23. Except for specific situations, computing hypergeometric functions is difficult in practice.[9]
  24. (a)j (b)j zj j ! , which is also commonly denoted by M(a; b; z) and is itself often called the confluent hypergeometric function.[9]
  25. The function 2F1(a, b; c; z) is commonly denoted by F (a, b; c; z) and is also fre- quently called the Gauss hypergeometric function.[9]
  26. We nd that, for both the conuent and Gauss hypergeometric functions, there is no simple answer to the problem of their computation, and dierent methods are optimal for dierent parameter regimes.[10]
  27. 3.3 Writing the conuent hypergeometric function as a single fraction . . . . . .[10]
  28. 4.3 Writing the Gauss hypergeometric function as a single fraction .[10]
  29. The computation of the hypergeometric function pFq, a special function encountered in a variety of applications, is frequently sought.[10]
  30. Returns hyp2f1 scalar or ndarray The values of the gaussian hypergeometric function.[11]
  31. Using (41) and subordination property, we have thatBy adopting (13) and (64), we obtainApplying hypergeometric function (59), we obtain the upper bound for the case .[12]
  32. Recently, there has been a clear interest on Bessel and hypergeometric functions from the point of view of geometric function theory.[12]
  33. A hypergeometric function is the sum of a hypergeometric series, which is dened as follows.[13]
  34. When one of the numerator parameters ai equals N , where N is a nonnegative integer, the hypergeometric function is a polynomial in z (see below).[13]
  35. Sometimes the most general hypergeometric function pFq is called a generalized hypergeo- metric function.[13]
  36. For the hypergeometric function 2F1 we have an integral representation due to Euler: Theorem 1.[13]
  37. This generally speeds up evaluation by producing a hypergeometric function of lower order.[14]
  38. Euler introduced the power series expansion of the form: where a, b, c are rational functions and F(a, b, c, z) is called the hypergeometric function.[15]
  39. The hypergeometric function takes a prominent position amongst the world of standard mathematical functions used in both pure and applied mathematics.[15]
  40. Gauss was aware of the multi-valuedness of the hypergeometric functions, known in recent times as the monodromy problem.[15]
  41. The modern notation for the Gauss hypergeometric function is according to Barnes (1908).[15]
  42. The classification recovers the classical transformations of degree 2, 3, 4, 6, and finds other transformations of some special classes of the Gauss hypergeometric function.[16]
  43. This paper claims that the natural logarithm can be represented by the Gaussian hypergeometric function.[17]
  44. We establish two quadratic transformations for Gauss hypergeometric function in terms of nite summation of combination of two Clausen hypergeometric functions.[18]
  45. Further, we have generalized our quadratic transformations in terms of general double series identities as well as in terms of reduction formulas for Kamp de Friets double hypergeometric function.[18]
  46. The Hypergeometric functions of two variables was introduced by Appell (1880) and Lauricella (1893) generalized them to several variables.[18]
  47. It is interesting to mention here that the results are very important for the application point of view, whenever hypergeometric functions reduce to gamma functions.[18]
  48. In this sequel, using the same technique, we establish certain integral transforms and fractional integral formulas for the generalized Gauss hypergeometric functions .[19]
  49. For , and , we have where the , a special case of the generalized hypergeometric function (10), is the Gauss hypergeometric function.[19]
  50. Further, if we set and in Theorems 1 to 5 or make use of the result (8), we obtain various integral transforms and fractional integral formulas for the Gauss hypergeometric function .[19]
  51. This a hypergeometric equation with constants a, b and c dened by F = c, G = (a + b + 1) and H = ab and can therefore be solved near t = 0 and t = 1 in terms of the hypergeometric function.[20]
  52. Problems: Find the general solution of each of the following dierential equations near the indicated singular point in terms of hypergeometric function.[20]
  53. However, the hypergeometric function is defined over the whole of the complex plane, so analytic continuation may be used if appropriate cut lines are used.[21]
  54. Gausss hypergeometric function gives a modular parame- terization of period integrals of elliptic curves in Legendre normal form E() : y2 = x(x 1)(x ).[22]
  55. Legendre elliptic curves, hypergeometric functions.[22]
  56. Hypergeometric functions are rarely in a form in which these formulae can be applied directly.[23]
  57. Writing sums as hypergeometric functions has the great advantage of simplifying manipulation by computer algebraic methods.[23]
  58. It is assumed that the hypergeometric functions are convergent and do not contain negative integers in the bottom parameter list.[23]
  59. A particular solution of Gausss hypergeometric differential equation (1) is known as Gausss hypergeometric function or simply hypergeometric function.[24]
  60. 2 ​ F 1 ​ ( a , b , c , z ) Regularized Gauss hypergeometric function RisingFactorial ( z ) k \left(z\right)_{k} ( z ) k ​ Rising factorial Pow a b {a}^{b} a b Power Factorial n ! n ![25]
  61. The hypergeometric functions are solutions to the Hypergeometric Differential Equation, which has a Regular Singular Point at the Origin.[26]

소스

  1. 1.0 1.1 1.2 1.3 Numerical evaluation of the gauss hypergeometric
  2. 2.0 2.1 Hypergeometric function
  3. 3.0 3.1 Gauss’ hypergeometric function
  4. 4.0 4.1 4.2 Hypergeometric Function -- from Wolfram MathWorld
  5. Large parameter cases of the Gauss hypergeometric function
  6. Gauss Hypergeometric Function
  7. 7.0 7.1 7.2 7.3 Computers and mathematics with applications 61 (2011) 620–629
  8. 8.0 8.1 8.2 8.3 Three lectures on hypergeometric functions
  9. 9.0 9.1 9.2 9.3 Numer algor
  10. 10.0 10.1 10.2 10.3 Computation of
  11. scipy.special.hyp2f1 — SciPy v1.6.1 Reference Guide
  12. 12.0 12.1 (PDF) An integral representation of some hypergeometric functions
  13. 13.0 13.1 13.2 13.3 Hypergeometric functions
  14. Hypergeometric functions — mpmath 1.2.0 documentation
  15. 15.0 15.1 15.2 15.3 Hypergeometric series
  16. Algebraic transformations of Gauss hypergeometric functions
  17. Proof that the Natural Logarithm Can Be Represented by the Gaussian Hypergeometric Function by Christopher Paul Nofal :: SSRN
  18. 18.0 18.1 18.2 18.3 Special issue no. 6 (april 2020), pp. 71 – 86
  19. 19.0 19.1 19.2 Certain Integral Transform and Fractional Integral Formulas for the Generalized Gauss Hypergeometric Functions
  20. 20.0 20.1 Gauss’s hypergeometric equation
  21. hypergeo: The hypergeometric function in hypergeo: The Gauss Hypergeometric Function
  22. 22.0 22.1 Gauss’s 2f1 hypergeometric function and the
  23. 23.0 23.1 23.2 J. phys. a: math. gen. 21 (1988) 1983-1998. printed in the u k
  24. [1]
  25. Gauss hypergeometric function
  26. Hypergeometric Function


메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}]
  • [{'LOWER': 'gaussian'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}]
  • [{'LOWER': 'ordinary'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}]