유한체 (finite field)

수학노트
둘러보기로 가기 검색하러 가기

개요[편집]

  • 유한체의 크기 \(q\)는 적당한 소수 \(p\)와 자연수 \(r\)에 대하여 \(q=p^r\)를 만족
  • 크기가 같은 두 유한체는 동형이며, \(\mathbb{F}_q\)로 나타냄
  • 갈루아 체라고 불리기도 함


성질[편집]

  • \(\mathbb{F}_{q}^{\times}\)는 순환군
  • \(n\)차의 기약다항식 \(f\in \mathbb{F}_{p}[x]\)에 대하여, 다음이 성립

\[ \mathbb{F}_{p^n}\cong \mathbb{F}_{p}[x]/(f) \]

  • 유한체 \(\mathbb{F}_{q}\) 는 방정식 \(x^{q}-x=x(x^{q-1}-1)=0\) 의 근으로 구성
  • \(x^{p^n}-x\)는 \(\mathbb{F}_{p}\)위에서 차수가 \(n\)을 나누고, 최고차항이 1이며 기약인 모든 다항식들의 곱으로 분해됨
  • 가령 \(\mathbb{F}_2\)위에서 다음이 성립

\[ x^{2^5}-x=x (x+1) \left(x^5+x^2+1\right) \left(x^5+x^3+1\right) \left(x^5+x^3+x^2+x+1\right) \left(x^5+x^4+x^2+x+1\right) \left(x^5+x^4+x^3+x+1\right) \left(x^5+x^4+x^3+x^2+1\right) \]


[편집]

  • \((\mathbb{F}_7,+,\cdot)\)
  • 덧셈표

\[ \begin{array}{c|ccccccc} + & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 2 & 3 & 4 & 5 & 6 & 0 \\ 2 & 2 & 3 & 4 & 5 & 6 & 0 & 1 \\ 3 & 3 & 4 & 5 & 6 & 0 & 1 & 2 \\ 4 & 4 & 5 & 6 & 0 & 1 & 2 & 3 \\ 5 & 5 & 6 & 0 & 1 & 2 & 3 & 4 \\ 6 & 6 & 0 & 1 & 2 & 3 & 4 & 5 \\ \end{array} \]

  • 곱셈표

\[ \begin{array}{c|ccccccc} \cdot & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 0 & 2 & 4 & 6 & 1 & 3 & 5 \\ 3 & 0 & 3 & 6 & 2 & 5 & 1 & 4 \\ 4 & 0 & 4 & 1 & 5 & 2 & 6 & 3 \\ 5 & 0 & 5 & 3 & 1 & 6 & 4 & 2 \\ 6 & 0 & 6 & 5 & 4 & 3 & 2 & 1 \\ \end{array} \]


관련된 항목들[편집]

매스매티카 파일 및 계산 리소스[편집]


리뷰논문, 에세이, 강의노트[편집]


관련논문[편집]

  • Weingartner, Andreas. ‘On the Degrees of Polynomial Divisors over Finite Fields’. arXiv:1507.01920 [math], 7 July 2015. http://arxiv.org/abs/1507.01920.