"5항 관계식 (5-term relation)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
2번째 줄: 2번째 줄:
  
 
* [[5항 관계식 (5-term relation) |5항 관계식 (5-term relation)]]
 
* [[5항 관계식 (5-term relation) |5항 관계식 (5-term relation)]]
*  
+
 
* [[5항 관계식 (5-term relation) |]]
+
 
  
 
 
 
 
30번째 줄: 30번째 줄:
 
 
 
 
  
<h5> q-이항정리</h5>
+
<h5> q-이항정리를 통한 증명</h5>
  
* [[q-이항정리]]<br><math>\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n}b^n=\frac{(ab;q)_{\infty}}{(b;q)_{\infty}}</math><br>  <br>
+
* '''[GM1997]'''참고
 +
* [[q-이항정리]]<br><math>\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n}b^n=\frac{(ab;q)_{\infty}}{(b;q)_{\infty}}</math><br>
 
*  z를 <math>(1-az)b=1-z</math> 의 해로 정의, 즉<br><math>z=\frac{1-b}{1-ab}</math><br>
 
*  z를 <math>(1-az)b=1-z</math> 의 해로 정의, 즉<br><math>z=\frac{1-b}{1-ab}</math><br>
 
* <math>q=e^{-t}</math>이고 t가 0으로 갈 때, 양변의 근사식은 다음과 같다<br> 좌변  <math>\frac{\operatorname{Li}_2(az)-\operatorname{Li}_2(a)-\operatorname{Li}_2(z)+\operatorname{Li}_2(1)-\log z\log b}{t}</math><br> 우변 <math>\frac{\operatorname{Li}_2(b)-\operatorname{Li}_2(ab)}{t}</math><br>
 
* <math>q=e^{-t}</math>이고 t가 0으로 갈 때, 양변의 근사식은 다음과 같다<br> 좌변  <math>\frac{\operatorname{Li}_2(az)-\operatorname{Li}_2(a)-\operatorname{Li}_2(z)+\operatorname{Li}_2(1)-\log z\log b}{t}</math><br> 우변 <math>\frac{\operatorname{Li}_2(b)-\operatorname{Li}_2(ab)}{t}</math><br>
* 양변의 근사식을 비교하여 5항 관계식을 얻는다
+
* 양변의 근사식을 비교하여 5항 관계식을 얻는다<br><math>\operatorname{Li}_2(az)-\operatorname{Li}_2(a)-\operatorname{Li}_2(z)+\operatorname{Li}_2(1)-\log z\log b}=\operatorname{Li}_2(b)-\operatorname{Li}_2(ab)}</math><br>
* <math>\frac{\operatorname{Li}_2(az)-\operatorname{Li}_2(a)-\operatorname{Li}_2(z)+\operatorname{Li}_2(1)-\log z\log b}{t}=\frac{\operatorname{Li}_2(b)-\operatorname{Li}_2(ab)}{t}</math>
 
 
 
우변 <math>\frac{\operatorname{Li}_2(b)-\operatorname{Li}_2(ab)}{t}</math>
 
 
 
 
 
  
 
 
 
 
111번째 줄: 107번째 줄:
 
[http://dx.doi.org/10.1023/A:1009709927327 ]
 
[http://dx.doi.org/10.1023/A:1009709927327 ]
  
* [http://dx.doi.org/10.1023/A:1009709927327 Algebraic Dilogarithm Identities]<br>
+
* '''[GM1997]'''[http://dx.doi.org/10.1023/A:1009709927327 Algebraic Dilogarithm Identities]<br>
 
** Basil Gordon  and Richard J. Mcintosh, 1997
 
** Basil Gordon  and Richard J. Mcintosh, 1997
  

2011년 2월 23일 (수) 17:06 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 다이로그

 

 로저스 다이로그 함수
  • 로저스 다이로그 함수 (Roger's dilogarithm) 의 정의
    \(x\in (0,1)\)에서 로저스 dilogarithm을 다음과 같이 정의
    \(L(x)=\operatorname{Li}_2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy\)

 

 

 5항 관계식
  • 로저스 다이로그 함수 \(L(x)\)에 대하여 다음이 성립한다
    \(0\leq x,y\leq 1\) 일 때,
    \(L(x)+L(1-xy)+L(y)+L(\frac{1-y}{1-xy})+L\Left( \frac{1-x}{1-xy} )\right)=\frac{\pi^2}{2}\)
  • \(1-x_{i}=x_{i-1}x_{i+1}\) 를 만족시키는 다섯개의 수

 

 

 q-이항정리를 통한 증명
  • [GM1997]참고
  • q-이항정리
    \(\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n}b^n=\frac{(ab;q)_{\infty}}{(b;q)_{\infty}}\)
  • z를 \((1-az)b=1-z\) 의 해로 정의, 즉
    \(z=\frac{1-b}{1-ab}\)
  • \(q=e^{-t}\)이고 t가 0으로 갈 때, 양변의 근사식은 다음과 같다
    좌변  \(\frac{\operatorname{Li}_2(az)-\operatorname{Li}_2(a)-\operatorname{Li}_2(z)+\operatorname{Li}_2(1)-\log z\log b}{t}\)
    우변 \(\frac{\operatorname{Li}_2(b)-\operatorname{Li}_2(ab)}{t}\)
  • 양변의 근사식을 비교하여 5항 관계식을 얻는다
    \(\operatorname{Li}_2(az)-\operatorname{Li}_2(a)-\operatorname{Li}_2(z)+\operatorname{Li}_2(1)-\log z\log b}=\operatorname{Li}_2(b)-\operatorname{Li}_2(ab)}\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

[1]

 

 

관련도서

 

 

관련기사

 

 

블로그