Q-이항정리

수학노트
이동: 둘러보기, 검색

개요

\[\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n}z^n=\sum_{n=0}^{\infty} \frac{(1-a)^n_q}{(1-q)^n_q}z^n=\frac{(az;q)_{\infty}}{(z;q)_{\infty}}=\prod_{n=0}^\infty \frac {1-azq^n}{1-zq^n}, |z|<1\]
Pochhammer 기호와 캐츠(Kac) 기호 참조

\[_{1}\phi_0 \left[\begin{matrix} a \\ - \end{matrix} ; q,z \right]=\sum_{n=0}^\infty \frac {(a;q)_n} {(q;q)_n} z^n\]

  • 초기하급수의 오일러곱과 이항계수(가우스 다항식)에 대한 정리를 특별한 경우로 가진다


이항정리

\[(1 + x)^\alpha = \sum_{k=0}^{\infty} {\alpha \choose k} x^k = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 +\cdots\] \[\frac{1}{(1-z)^{a}}=\sum_{n=0}^{\infty}\frac{(a)_n}{n!}z^n=1+az+\frac{a(a+1)}{2!}z^2+\frac{a(a+1)(a+2)}{3!}z^3+\cdots = \,_1F_0(a;z)\]


q-이항정리의 유도

\[\frac{1}{(1-z)^{a}}=\sum_{n=0}^{\infty}\frac{(a)_n}{n!}z^n\]

  • q-analogue

\[\sum_{n=0}^{\infty}\frac{(q^{\alpha};q)_n}{(q;q)_n}z^n\]

 

 

q-이항정리

정리

\[\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n}z^n=\sum_{n=0}^{\infty} \frac{(1-a)^n_q}{(1-q)^n_q}z^n=\frac{(az;q)_{\infty}}{(z;q)_{\infty}}=\prod_{n=0}^\infty \frac {1-azq^n}{1-zq^n}, |z|<1\]

  • 다음과 같은 특수한 경우를 얻을 수 있다


무한곱

\[(-z;q)_{\infty}=\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\] \[\frac{1}{(z;q)_{\infty}}=\prod_{n=0}^{\infty}\frac{1}{1-zq^n}=\sum_{n\geq 0}\frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\]

가우스 공식

\[(-z;q)_{n}=\prod_{r=0}^{n-1}(1+zq^r)=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} \begin{bmatrix} n\\ r\end{bmatrix}_{q}q^{r(r-1)/2}z^r\] (증명) q-이항정리에 \(a=q^{-N}\), \(z\to zq^{N}\) 를 사용 ■

하이네 공식

\[\prod_{r=0}^{n-1}\frac{1}{1-zq^r}=\sum_{r=0}^{\infty} \begin{bmatrix} n+r-1\\ r\end{bmatrix}_{q} z^r\]

\[\frac{1}{(1-x)^n}=\sum_{k=0}^{\infty}\textstyle\left\langle{n\atop k}\right\rangle x^k\]



역사

 

매스매티카 파일 및 계산 리소스


 

관련된 항목들

   

사전 형태의 자료