Kissing number and sphere packings

수학노트
이동: 둘러보기, 검색

개요

Kissing number

  • 각 차원에서 주어진 구의 주변에 같은 크기의 구를 최대 몇 개까지 접하도록 배치할수 있는가의 문제 (주변의 구들은 서로 접할 수는 있으나 겹치는 것은 허용되지 않음)
  • 1차원에서는 2, 2차원에서는 6, 3차원에서는 12, 4차원에서는 24

1964116-2d.gif

  • 8차원에서는 240, 24차원에서는 196560 임이 알려져 있음.
    • 이는 8차원의 E8, 24차원의 리치(Leech)격자에 의해 얻어짐.
  • 나머지 차원은 아직 미해결.
  • "kissing"은 당구용어 ([ConwaySloane])

Sphere packings

  • n차원 공간을 가장 효율적으로 채우는 구의 배치는 무엇인가의 문제
  • 일반적인 경우는 매우 어렵고, 좀더 접근이 가능한 경우인 격자 모양의 배치가 수학적으로 중요한 문제.

저차원에서의 kissing number에 관한 결과

1차원

  • kissing number = 2

파일:Kissing-1d.svg


2차원

  • kissing number = 6

파일:Kissing-2d.svg


3차원

  • kissing number = 12
  • 1694년 Isaac Newton 과 David Gregory가 이에 대해 토론함 ([ConwaySloane]).
  • 1953년 Schütte와 van der Waerden에 의해 처음으로 제대로 증명됨 ([ConwaySloane])
  • [Musin05]


4차원

  • kissing number = 24
  • 2003년 Oleg R. Musin에 의해 증명
  • [Musin05], [Musin08]


고차원

  • 5차원 이상에서는 8,24 차원을 제외하고 미해결
  • 8차원에서는 240, 24차원에서는 196560 임이 알려져 있음.

메모


역사



관련된 학부 과목과 미리 알고 있으면 좋은 것들


관련된 항목들



수학용어번역

  • kissing - 대한수학회 수학용어집


사전 형태의 자료



리뷰, 에세이, 강의노트

관련논문

관련도서

  • [ConwaySloane] Sphere Packings, Lattices and Groups (Grundlehren der mathematischen Wissenschaften)
    • John Horton Conway, Neil J. A. Sloane
    • 이 분야의 가장 표준적인 도서
  • 케플러의 추측