소수 정리

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 1일 (목) 13:51 판 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소==    
개요==
  • \(x\) 이하의 소수의 갯수 \(\pi(x)\) 에 대해, \(x\) 가 크면 \(\pi(x)\sim\frac{x}{\log x}\) 이다. 즉, \(\lim_{x \rightarrow \infty} \frac{\pi(x)\log(x)}{x} = 1\) 이 성립한다.
  • 가우스가 소수 표를 보다가 처음 발견
  • 복소함수론을 사용한 해석적 증명이 얻어짐
  • 후에 에르디시와 셀베르그에 의해 복소함수론을 사용하지 않는 초등적 증명(elementary proof)
     
동치명제==
  • 다음은 소수정리와 동치이다
    \(\varphi(x)=\sum_{p\leq x}\log p \sim x\)
    (증명)
    \(\varphi(x)=\sum_{p\leq x}\log p \leq \sum_{p\leq x}\log x=\pi(x)\log x\)
    임의의 \(\epsilon>0\)에 대하여, 
    \(\varphi(x)\geq \sum_{x^{1-\epsilon}\leq p\leq x}\log p \geq \sum_{x^{1-\epsilon}\leq p\leq x}(1-\epsilon)\log x = (1-\epsilon)\log x\{\pi(x)+O(x^{1-\epsilon}\}\)
    따라서 \(\varphi(x)=\sum_{p\leq x}\log p \sim x\) 임을 가정하면, \(\pi(x)\sim\frac{x}{\log x}\) 를 얻는다. ■
   
로그적분==    

역사

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역==    

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그