"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
121번째 줄: 121번째 줄:
 
* [http://en.wikipedia.org/wiki/1859 1859] - 리만이 [[리만가설]]을 발표
 
* [http://en.wikipedia.org/wiki/1859 1859] - 리만이 [[리만가설]]을 발표
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Charles_Hermite Charles Hermite]  [[#|자연상수 e는 초월수]]
+
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Charles_Hermite Charles Hermite]  [[#|자연상수 e는 초월수]] 임을 증명
* 임으
 
 
* [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스([http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius])가 [[정규특이점(regular singular points)]]을 가지는 선형미분방정식의 급수해 찾는 방법을 소개함
 
* [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스([http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius])가 [[정규특이점(regular singular points)]]을 가지는 선형미분방정식의 급수해 찾는 방법을 소개함
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
207번째 줄: 206번째 줄:
 
 
 
 
  
 
+
<h5>관련링크와 웹페이지</h5>
 +
 
 +
* [http://www.17centurymaths.com/ Some Mathematical Works of the 17th & 18th Centuries Translated mainly from Latin into English.]
 +
* [http://homepages.bw.edu/%7Edcalvis/history.html History of Mathematics Web Sites]
  
 
 
 
 
213번째 줄: 215번째 줄:
 
 
 
 
  
<h5>관련도서 및 추천도서</h5>
+
<h5>관련도서</h5>
  
 
*  도서내검색<br>
 
*  도서내검색<br>

2011년 3월 15일 (화) 08:01 판

 

15세기

 

 

 

16세기

 

 

 

 

17세기

 

 


18세기


 

 

19세기


 

 

20세기

 

 

관련링크와 웹페이지

 

 

관련도서

 

사전형태의 자료