"5차방정식과 정이십면체"의 두 판 사이의 차이
11번째 줄: | 11번째 줄: | ||
− | <h5> | + | <h5> </h5> |
* [[평사 투영(stereographic projection)|Stereographic projections]] | * [[평사 투영(stereographic projection)|Stereographic projections]] | ||
17번째 줄: | 17번째 줄: | ||
** <math>F_1=z_1z_2(z_1^{10}+11z_1^5z_2^5-z_2^{10})</math> | ** <math>F_1=z_1z_2(z_1^{10}+11z_1^5z_2^5-z_2^{10})</math> | ||
* edge points<br> | * edge points<br> | ||
− | ** <math>F_2=(z_1^{20}+z_2^{20}) | + | ** <math>F_2=-(z_1^{20}+z_2^{20})+228(z_1^{15}z_2^{5}-z_1^{5}z_2^{15})-494z_1^{10}z_2^{10}</math> |
* fact points<br> | * fact points<br> | ||
** <math>F_3=(z_1^{30}+z_2^{30})+522(z_1^{25}z_2^{5}-z_1^{5}z_2^{25})-10005(z_1^{20}z_2^{10}+z_1^{10}z_2^{20})</math> | ** <math>F_3=(z_1^{30}+z_2^{30})+522(z_1^{25}z_2^{5}-z_1^{5}z_2^{25})-10005(z_1^{20}z_2^{10}+z_1^{10}z_2^{20})</math> |
2009년 12월 15일 (화) 13:10 판
이 항목의 스프링노트 원문주소
개요
- Stereographic projections
- vertex points
- \(F_1=z_1z_2(z_1^{10}+11z_1^5z_2^5-z_2^{10})\)
- edge points
- \(F_2=-(z_1^{20}+z_2^{20})+228(z_1^{15}z_2^{5}-z_1^{5}z_2^{15})-494z_1^{10}z_2^{10}\)
- fact points
- \(F_3=(z_1^{30}+z_2^{30})+522(z_1^{25}z_2^{5}-z_1^{5}z_2^{25})-10005(z_1^{20}z_2^{10}+z_1^{10}z_2^{20})\)
syzygy
- \(1728F_1^5-F_2^3-F_3^2=0\)
역사
20세기 수학의 궤도를 제시한 힐버트의 역사적인 1900년 국제수학자대회 연설의 초반부에는 다음과 같은 언급이 있음. (Mathematical Problems, Lecture delivered before the International Congress of Mathematicians at Paris in 1900 By Professor David Hilbert)
But it often happens also that the same special problem finds application in the most unlike branches of mathematical knowledge. So, for example, the problem of the shortest line plays a chief and historically important part in the foundations of geometry, in the theory of curved lines and surfaces, in mechanics and in the calculus of variations. And how convincingly has F. Klein, in his work on the icosahedron, pictured the significance which attaches to the problem of the regular polyhedra in elementary geometry, in group theory, in the theory of equations and in that of linear differential equations.
[/pages/2026224/attachments/912874 img363.gif]
[/pages/2026224/attachments/912872 img324.gif]
관련된 다른 주제들
표준적인 도서 및 추천도서
- Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree
- Felix Klein
- Geometry of the Quintic
- Jerry Shurman
- 위 클라인 책의 일부 내용이 학부생들도 충분히 접근할 수 있도록 잘 쓰여짐.
- Beyond the Quartic Equation
- Bruce King
관련논문
- Solving the quintic by iteration
- Peter Doyle and Curt McMullen
- Extensions icosaédriques (pdf)
- J-P. Serre, Oeuvres III (no. 123 (1980)), Springer, 1986