"양자 다이로그 함수(quantum dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소==
 
 
* [[양자 다이로그 함수(quantum dilogarithm)]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
99번째 줄: 91번째 줄:
 
* [[q-초기하급수의 근사식]]
 
* [[q-초기하급수의 근사식]]
 
* [[양자 바일 대수와 양자평면]]
 
* [[양자 바일 대수와 양자평면]]
 
 
 
 
 
 
 
==수학용어번역==
 
 
*  단어사전<br>
 
** http://www.google.com/dictionary?langpair=en|ko&q=
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
  
 
 
 
 
122번째 줄: 97번째 줄:
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxTGw0Vy1Ma2R0Ujg/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxTGw0Vy1Ma2R0Ujg/edit
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
  
 
 
  
 
 
 
 
137번째 줄: 104번째 줄:
  
 
* http://en.wikipedia.org/wiki/Quantum_dilogarithm
 
* http://en.wikipedia.org/wiki/Quantum_dilogarithm
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
  
 
 
  
 
 
 
 
162번째 줄: 125번째 줄:
 
* [http://dx.doi.org/10.1142/S0217732394000447 Quantum Dilogarithm] L.D.<em style="line-height: 2em;">Fadeev</em> and R.M.<em style="line-height: 2em;">Kashaev</em>, Mod. Phys. Lett. A. 9 (1994) p.427–434 [http://www.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&s4=&s5=&s6=&s7=Quantum%20Dilogarithm&s8=All&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=52&mx-pid=1264393 MR1264393(95i:11150)]<br>
 
* [http://dx.doi.org/10.1142/S0217732394000447 Quantum Dilogarithm] L.D.<em style="line-height: 2em;">Fadeev</em> and R.M.<em style="line-height: 2em;">Kashaev</em>, Mod. Phys. Lett. A. 9 (1994) p.427–434 [http://www.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&s4=&s5=&s6=&s7=Quantum%20Dilogarithm&s8=All&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=52&mx-pid=1264393 MR1264393(95i:11150)]<br>
  
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/10.1023/A:1006949508631
 
 
[[분류:다이로그]]
 
[[분류:다이로그]]

2013년 2월 27일 (수) 14:52 판

개요

\[\Psi(z)=(z;q)_{\infty}=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\]

\[\prod_{n=0}^{\infty}(1+zq^n)=1+\sum_{n\geq 1}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\]

 

q-integral (Jackson integral)

  • \(0<q<1\)에 대하여 다음과 같이 정의

\[\int_0^a f(x) d_q x = a(1-q)\sum_{k=0}^{\infty}q^k f(aq^k )\]

  • \(q\to 1\) 이면,

\[\int_0^a f(x) d_q x \to \int_0^a f(x) dx \]


 

양자 다이로그 함수(quantum dilogarithm)

\[\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt \]

  • 잭슨 적분을 이용하여 $\operatorname{Li}_{2,q}(z)$를 다음과 같이 정의

\[\operatorname{Li}_{2,q}(z) = -\int_0^z{{\ln (1-t)}\over t} d_{q}t=-z(1-q)\sum_{n=0}^{\infty}q^n \frac{\log (1-zq^n)}{zq^n}=(q-1)\sum_{n=0}^{\infty}\log (1-zq^n) \]

  • 양자 다이로그 함수를 다음과 같이 정의함

\[\Psi(z) :=(z;q)_{\infty}=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})\]

 

 

\(q\to 1\) 일 때의 근사식

  • \(q=e^{-t}\) 이고 t가 0으로 갈 때, \[\Psi(x)=(x,e^{-t})_{\infty}\approx(\sqrt{1-x})\exp(-\frac{\operatorname{Li}_{2}(x)}{t})\]

 

 

q가 root of unity 일 때의 근사식

  • [BR1995] section 3

 


바일 대수(Weyl algebra)와 양자 다이로그 항등식

\[(u;q)_{\infty}(v;q)_{\infty}=(u+v;q)_{\infty}\]

  • Faddeev-Volkov 항등식

\[(v;q)_{\infty}(u;q)_{\infty}=(u+v-vu;q)_{\infty}\]

\[(v;q)_{\infty}(u;q)_{\infty}=(u;q)_{\infty}(-vu;q)_{\infty}(v;q)_{\infty}\]



 

역사

 

 

 

메모

 

 

관련된 항목들

 

매스매티카 파일 및 계산 리소스


 

사전 형태의 자료


 

리뷰논문과 에세이

 

 

관련논문