"자코비 다항식"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) (→특수한 경우) |
Pythagoras0 (토론 | 기여) (→직교성) |
||
54번째 줄: | 54번째 줄: | ||
* weight함수와 구간 | * weight함수와 구간 | ||
:<math>w(x) = (1-x)^{\alpha} (1+x)^{\beta}, x\in [-1,1]</math> | :<math>w(x) = (1-x)^{\alpha} (1+x)^{\beta}, x\in [-1,1]</math> | ||
− | + | ;보조정리 | |
+ | 다음이 성립한다 | ||
$$ | $$ | ||
\int_{-1}^1(1-x)^{\alpha} (1+x)^{\beta}\,dx=2^{\alpha+\beta+1}\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)} | \int_{-1}^1(1-x)^{\alpha} (1+x)^{\beta}\,dx=2^{\alpha+\beta+1}\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)} | ||
74번째 줄: | 75번째 줄: | ||
* $m,n\in \mathbb{Z}_{\geq 0}$에 대하여, | * $m,n\in \mathbb{Z}_{\geq 0}$에 대하여, | ||
:<math>\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}</math> | :<math>\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}</math> | ||
− | + | ||
− | + | ;증명 | |
− | + | $P_m^{\alpha,\beta}$는 $m$차 다항식이므로, 적당한 상수 $c_{mk}, k=0,1,\cdots, m$에 대하여 다음과 같이 쓸 수 있다 | |
− | |||
− | $P_m^{\alpha,\beta}$는 $m$차 다항식이므로, 다음과 같이 쓸 수 있다 | ||
$$ | $$ | ||
− | P_m^{(\alpha,\beta)} (x)=\sum_{k=0}^m c_{mk}x^k | + | P_m^{(\alpha,\beta)} (x)=\sum_{k=0}^m c_{mk}x^k. |
$$ | $$ | ||
− | + | 직교성은 \ref{RF}과 [[부분적분]]을 이용하여 증명할 수 있다. $m\leq n$이라 가정하자. | |
− | 직교성은 \ref{RF}과 | ||
$$ | $$ | ||
\begin{aligned} | \begin{aligned} | ||
92번째 줄: | 90번째 줄: | ||
$$ | $$ | ||
■ | ■ | ||
+ | |||
+ | ===예=== | ||
+ | * <math>\alpha=1/2,\beta=1/2,m=n=2</math>인 경우 | ||
+ | :<math>\int_{-1}^1 (1-x)^{\frac{1}{2}} (1+x)^{\frac{1}{2}} P_2^{(\frac{1}{2},\frac{1}{2})} (x)P_2^{(\frac{1}{2},\frac{1}{2})} (x) \; dx= \frac{4}{6} \frac{\Gamma(3+\frac{1}{2})\Gamma(3+\frac{1}{2})}{\Gamma(4)2!}=\frac{4(\frac{15\sqrt{\pi}}{8})^2}{12\cdot 3!}=\frac{25\pi}{128}</math> | ||
==테이블== | ==테이블== |
2015년 3월 23일 (월) 17:10 판
개요
- $n\in \mathbb{Z}_{\geq 0}, \alpha, \beta$를 매개변수로 갖는 직교다항식 $P_{n}^{(\alpha\,\beta)}(x)$
- 다양한 직교다항식을 특수한 경우로 가짐
정의
- 초기하급수(Hypergeometric series)를 통해 정의된다\[P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!} \,_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\frac{1-z}{2}\right)\]
- 다항식표현\[P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+n+1)}{n!\Gamma (\alpha+\beta+n+1)} \sum_{m=0}^n {n\choose m} \frac{\Gamma (\alpha + \beta + n + m + 1)}{\Gamma (\alpha + m + 1)} \left(\frac{z-1}{2}\right)^m\]
특수한 경우
$$ C_n^{(\lambda )}(x)=\frac{(2 \lambda)_{n}}{\left(\lambda +\frac{1}{2}\right)_n}P_n^{\left(\lambda -\frac{1}{2},\lambda -\frac{1}{2}\right)}(x) $$
$$ T_n(x)=\frac{2^{2 n} (n!)^2}{(2 n)!}P_n^{\left(-\frac{1}{2},-\frac{1}{2}\right)}(x) $$ $$ U_n(x)=\frac{2^{2 n+1} ((n+1)!)^2 }{(2 n+2)!}P_n^{\left(\frac{1}{2},\frac{1}{2}\right)}(x) $$
$$ P_n(x)=P_n^{(0,0)}(x) $$
$$ L_n^{\alpha }(x)=\lim_{\beta \to \infty } \, P_n^{(\alpha ,\beta )}\left(1-\frac{2 x}{\beta }\right) $$
$$ H_n(x)=\lim_{\alpha \to \infty } \, \frac{\left(2^n n!\right) }{\alpha ^{n/2}}P_n^{(\alpha ,\alpha )}\left(\frac{x}{\sqrt{\alpha }}\right) $$
로드리게스 공식
- 다음이 성립한다
$$ (1-x)^{\alpha } (1+x)^{\beta } P_n^{(\alpha ,\beta )}(x)=\frac{(-1)^n}{2^n n!}\frac{d^n}{dx^n}\left[\left((1-x)^{\alpha +n} (1+x)^{\beta +n}\right)\right] \label{RF} $$
미분방정식
- 자코비 다항식은 다음을 만족시킨다\[(1-x^2)y'' + ( \beta-\alpha - (\alpha + \beta + 2)x )y'+ n(n+\alpha+\beta+1) y = 0\]
직교성
- weight함수와 구간
\[w(x) = (1-x)^{\alpha} (1+x)^{\beta}, x\in [-1,1]\]
- 보조정리
다음이 성립한다 $$ \int_{-1}^1(1-x)^{\alpha} (1+x)^{\beta}\,dx=2^{\alpha+\beta+1}\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)} $$
- (증명)
$t=(1-x)/2$로 치환하면, $$ \begin{aligned} \int_{-1}^1(1-x)^{\alpha} (1+x)^{\beta}\,dx=&\int_0^1 2^{\alpha+\beta+1}t^{\alpha}(1-t)^{\beta}\, dt \\ =&2^{\alpha+\beta+1}B(\alpha+1,\beta+1)\\ =&2^{\alpha+\beta+1}\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)} \end{aligned} $$ 여기서 $B(x,y)$는 오일러 베타적분(베타함수) ■
- (정리)
- $m,n\in \mathbb{Z}_{\geq 0}$에 대하여,
\[\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}\]
- 증명
$P_m^{\alpha,\beta}$는 $m$차 다항식이므로, 적당한 상수 $c_{mk}, k=0,1,\cdots, m$에 대하여 다음과 같이 쓸 수 있다 $$ P_m^{(\alpha,\beta)} (x)=\sum_{k=0}^m c_{mk}x^k. $$ 직교성은 \ref{RF}과 부분적분을 이용하여 증명할 수 있다. $m\leq n$이라 가정하자. $$ \begin{aligned} \int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \, dx=&\sum_{k=0}^m c_{mk}\frac{(-1)^n}{2^nn!}\int_{-1}^1x^k\frac{d^n}{dx^n}\left[(1-x)^{\alpha+n} (1+x)^{\beta+n}\right]\,dx\\ =&\sum_{k=0}^m\frac{ c_{mk}}{2^n}\int_{-1}^1\left[(1-x)^{\alpha+n} (1+x)^{\beta+n}\right]\,dx\\ =&\delta_{nm}\frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \end{aligned} $$ ■
예
- \(\alpha=1/2,\beta=1/2,m=n=2\)인 경우
\[\int_{-1}^1 (1-x)^{\frac{1}{2}} (1+x)^{\frac{1}{2}} P_2^{(\frac{1}{2},\frac{1}{2})} (x)P_2^{(\frac{1}{2},\frac{1}{2})} (x) \; dx= \frac{4}{6} \frac{\Gamma(3+\frac{1}{2})\Gamma(3+\frac{1}{2})}{\Gamma(4)2!}=\frac{4(\frac{15\sqrt{\pi}}{8})^2}{12\cdot 3!}=\frac{25\pi}{128}\]
테이블
$$ \begin{array}{c|c} n & P_n^{(\alpha ,\beta )}(x) \\ \hline 0 & 1 \\ 1 & \frac{1}{2} (\alpha -\beta +z (\alpha +\beta +2)) \\ 2 & \frac{1}{2} (\alpha +1) (\alpha +2)+\frac{1}{8} (z-1)^2 (\alpha +\beta +3) (\alpha +\beta +4)+\frac{1}{2} (\alpha +2) (z-1) (\alpha +\beta +3) \\ 3 & \frac{1}{6} (\alpha +1) (\alpha +2) (\alpha +3)+\frac{1}{48} (z-1)^3 (\alpha +\beta +4) (\alpha +\beta +5) (\alpha +\beta +6)+\frac{1}{8} (\alpha +3) (z-1)^2 (\alpha +\beta +4) (\alpha +\beta +5)+\frac{1}{4} (\alpha +2) (\alpha +3) (z-1) (\alpha +\beta +4) \end{array} $$
메모
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
- http://en.wikipedia.org/wiki/Jacobi_polynomials
- NIST Digital Library of Mathematical Functions Chapter 18 Orthogonal Polynomials
리뷰, 에세이, 강의노트
- S. Ole Warnaar, Beta Integrals