"감마함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 +
 +
* [[감마함수]]
 +
 +
 
 +
 +
 
 +
 
<h5>정의</h5>
 
<h5>정의</h5>
  
56번째 줄: 64번째 줄:
 
<h5>오일러 베타적분</h5>
 
<h5>오일러 베타적분</h5>
  
 
+
* [[#]]
  
 
 
 
 

2009년 12월 5일 (토) 10:07 판

이 항목의 스프링노트 원문주소

 

 

정의
  • \(\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}\)
  • \(\Gamma(s+1) =s\Gamma(s)\)
  • 자연수 \(n\)에 대하여 \(\Gamma(n)=(n-1)!\)
  • \(\Gamma(0)=1\)
  • 팩토리얼 함수의 정의역을 복소수로 확장

 

 

적분표현

(Binet's second expression)

\(\operatorname{Re} z > 0 \) 일 때, \(\log \Gamma(z)=(z-\frac{1}{2})\log z -z+\frac{1}{2}\log 2\pi+ 2\int_0^{\infty}\frac{\tan^{-1}(t/z)}{e^{2\pi t} -1}dt\)

(http://dlmf.nist.gov/5/9/ 참고)

 

반사공식
  • \(\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\)
  • \(\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}\)
  • 일반적으로 
    \(\Gamma(n+\frac{1}{2})=(\frac{1}{2})_n\sqrt{\pi}\)
    (증명)

\(\Gamma(n+\frac{1}{2})=\Gamma(\frac{2n+1}{2})=(\frac{2n-1}{2})\Gamma(\frac{2n-1}{2})=(\frac{2n-1}{2})(\frac{2n-3}{2})\Gamma(\frac{2n-3}{2})=(\frac{2n-1}{2})\cdots(\frac{1}{2})\Gamma(\frac{1}{2})=\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{2n-1}{2}\sqrt{\pi}=(\frac{1}{2})_n\sqrt{\pi}\)

 

 

곱셈공식
  • \(\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2^{\frac{1}{2}-2z} \; \sqrt{2\pi} \; \Gamma(2z) \,\!\)
  • \(\Gamma(z) \; \Gamma\left(z + \frac{1}{m}\right) \; \Gamma\left(z + \frac{2}{m}\right) \cdots \Gamma\left(z + \frac{m-1}{m}\right) = (2 \pi)^{(m-1)/2} \; m^{1/2 - mz} \; \Gamma(mz). \,\!\)

 

 

Digamma  함수
  • 감마함수의 로그미분으로 정의

\(\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}\)

 

 

오일러 베타적분

 

 

재미있는 사실

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

사전자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상