"다이로그 함수(dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
 
 
* [[다이로그 함수(dilogarithm)|Dilogarithm 함수]]
 
 
 
 
 
 
 
 
 
 
 
<h5>개요</h5>
 
  
 
* [[폴리로그 함수(polylogarithm)|폴리로그 함수(poylogarithm)]]의 하나인 special 함수이다.
 
* [[폴리로그 함수(polylogarithm)|폴리로그 함수(poylogarithm)]]의 하나인 special 함수이다.
* 오일러, 로바체프스키, 아벨 등에 의하여 연구되었다. 
+
* 오일러, 로바체프스키, 아벨 등에 의하여 연구되었다.  
* 정수론, 대수적 K-이론, 3차원 쌍곡다양체, 등각장론 등 현대수학의 많은 분야에서 중요한 역할을 한다.
+
* 정수론, 대수적 K-이론, 3차원 쌍곡다양체, 등각장론 등 현대수학의 많은 분야에서 중요한 역할을 한다.
* [[Pochhammer 기호와 캐츠(Kac) 기호|Pochhammer 기호]] <math>(q)_{n} =(q;q)_{n}=(1-q)(1-q^2)\cdots(1-q^n)</math> 의 근사식을 구하는 과정에서 자연스럽게 등장한다.
+
* [[Pochhammer 기호와 캐츠(Kac) 기호|Pochhammer 기호]] <math>(q)_{n} =(q;q)_{n}=(1-q)(1-q^2)\cdots(1-q^n)</math> 근사식을 구하는 과정에서 자연스럽게 등장한다.
* 모든 [[다이로그 항등식 (dilogarithm identities)]]을 5항 관계식을 통하여 이해할 수 있는지의 여부는 다이로그 함수에 대한 중요한 미해결 문제이다
+
* 모든 [[다이로그 항등식 (dilogarithm identities)]]을 5항 관계식을 통하여 이해할 수 있는지의 여부는 다이로그 함수에 대한 중요한 미해결 문제이다
  
 
+
  
 
+
  
<h5>정의</h5>
+
==정의==
  
*  다이로그 함수는 복소수 <math>|z|<1</math>에 대하여 다음과 같이 정의됨<br><math>\operatorname{Li}_2(z)= \sum_{n=1}^\infty {z^n \over n^2}</math><br><math>|z|\leq 1</math> 에서 고르게 수렴하는 급수이므로, <math>|z|\leq 1</math>에서 연속<br>
+
*  다이로그 함수는 복소수 <math>|z|<1</math>에 대하여 다음과 같이 정의됨<br><math>\operatorname{Li}_ 2(z)= \sum_{n=1}^\infty {z^n \over n^2}</math><br><math>|z|\leq 1</math> 에서 고르게 수렴하는 급수이므로, <math>|z|\leq 1</math>에서 연속<br>
*  다음과 같은 적분으로 정의하면 해석적으로 확장가능<br><math>\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt </math> for <math>z\in \mathbb C-[1,\infty)</math><br>
+
*  다음과 같은 적분으로 정의하면 해석적으로 확장가능<br><math>\operatorname{Li}_ 2(z) = -\int_0^z{{\ln (1-t)}\over t} dt </math> for <math>z\in \mathbb C-[1,\infty)</math><br>
  
 
+
  
 
+
  
<h5>함수의 그래프</h5>
+
==함수의 그래프==
  
 
[https://lh6.googleusercontent.com/1fwNv-3AwBtyojCXz7crmk7eB1ORdFS6HAW93poAl4Dfkrh6mqmfI19-x58JC9OKWJ43pXICEdM ]
 
[https://lh6.googleusercontent.com/1fwNv-3AwBtyojCXz7crmk7eB1ORdFS6HAW93poAl4Dfkrh6mqmfI19-x58JC9OKWJ43pXICEdM ]
  
 
+
  
 
+
  
 
+
  
<h5>단위원에서의 실수부와 허수부</h5>
+
==단위원에서의 실수부와 허수부==
  
* <math>z=e^{i\theta}</math>, <math>0 \leq \theta \leq 2\pi</math> 일 때,<br><math>\operatorname{Li}_2(e^{i\theta})= \sum_{n=1}^\infty \frac{e^{in\theta}}{n^2}=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}+i\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}</math><br><math>\mathfrak{R}(\operatorname{Li}_2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}=\frac{\pi^2}{6}-\frac{\theta(2\pi-\theta)}{4}</math><br><math>\mathfrak{I}(\operatorname{Li}_2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}=Cl_2(\theta)</math><br>
+
* <math>z=e^{i\theta}</math>, <math>0 \leq \theta \leq 2\pi</math> 일 때,<br><math>\operatorname{Li}_ 2(e^{i\theta})= \sum_{n=1}^\infty \frac{e^{in\theta}}{n^2}=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}+i\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}</math><br><math>\mathfrak{R}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}=\frac{\pi^2}{6}-\frac{\theta(2\pi-\theta)}{4}</math><br><math>\mathfrak{I}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}=Cl_ 2(\theta)</math><br>
 
* [[로바체프스키 함수|로바체프스키와 클라우센 함수]] 항목 참조<br>
 
* [[로바체프스키 함수|로바체프스키와 클라우센 함수]] 항목 참조<br>
  
 
+
  
 
+
  
<h5>여러가지 항등식</h5>
+
==여러가지 항등식==
  
 
* 오일러의 반사공식
 
* 오일러의 반사공식
  
<math>\mbox{Li}_2 \left(x \right)+\mbox{Li}_2 \left(1-x \right)=  \frac{\pi^2}{6}-\ln(x)\ln(1-x)</math>, <math>0<x<1</math>
+
<math>\mbox{Li}_ 2 \left(x \right)+\mbox{Li}_ 2 \left(1-x \right)=  \frac{\pi^2}{6}-\ln(x)\ln(1-x)</math>, <math>0<x<1</math>
  
*  반전공식<br><math>\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{1}{x} \right) = -\frac{\pi^2}{6}-\frac{1}{2}\log^2(-x)</math><br>
+
*  반전공식<br><math>\mbox{Li}_ 2(x)+\mbox{Li}_ 2 \left( \frac{1}{x} \right) = -\frac{\pi^2}{6}-\frac{1}{2}\log^2(-x)</math><br>
 
* 란덴의 항등식
 
* 란덴의 항등식
  
<math>\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{-x}{1-x} \right)=-\frac{1}{2}\log^2(1-x)</math> 또는
+
<math>\mbox{Li}_ 2(x)+\mbox{Li}_ 2 \left( \frac{-x}{1-x} \right)=-\frac{1}{2}\log^2(1-x)</math> 또는
  
<math>\mbox{Li}_2(1-x)+\mbox{Li}_2 \left(1- \frac{1}{x} \right)=-\frac{1}{2}\log^2(x)</math>
+
<math>\mbox{Li}_ 2(1-x)+\mbox{Li}_ 2 \left(1- \frac{1}{x} \right)=-\frac{1}{2}\log^2(x)</math>
  
*  여기에서 다음의 함수들은 초등함수 부분을 무시하면 같다는 것을 알 수 있음<br><math>\mbox{Li}_2(x)</math>,<math>\mbox{Li}_2 \left(\frac{1}{1-x}\right)</math>,  <math>\mbox{Li}_2 \left(1- \frac{1}{x} \right)</math>, <math>-\mbox{Li}_2 \left( \frac{1}{x} \right)</math>,<math>-\mbox{Li}_2 \left(1-x \right)</math> , <math>-\mbox{Li}_2 \left( \frac{x}{x-1} \right)</math><br>
+
*  여기에서 다음의 함수들은 초등함수 부분을 무시하면 같다는 것을 알 수 있음<br><math>\mbox{Li}_ 2(x)</math>,<math>\mbox{Li}_ 2 \left(\frac{1}{1-x}\right)</math>, <math>\mbox{Li}_ 2 \left(1- \frac{1}{x} \right)</math>, <math>-\mbox{Li}_ 2 \left( \frac{1}{x} \right)</math>,<math>-\mbox{Li}_ 2 \left(1-x \right)</math> , <math>-\mbox{Li}_ 2 \left( \frac{x}{x-1} \right)</math><br>
* [[교차비(cross ratio)|사영기하학과 교차비]], [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)|Bloch-Wigner dilogarithm]] 항목들을 참조
+
* [[교차비(cross ratio)|사영기하학과 교차비]], [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)|Bloch-Wigner dilogarithm]] 항목들을 참조
  
 
+
  
 
+
  
<h5>곱셈공식</h5>
+
==곱셈공식==
  
*  제곱공식<br><math>\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))</math><br><math>\frac{1}{2}\mbox{Li}_2(x^2)=\mbox{Li}_2(x)+\mbox{Li}_2(-x)</math><br>
+
*  제곱공식<br><math>\mbox{Li}_ 2(x^2)=2(\mbox{Li}_ 2(x)+\mbox{Li}_ 2(-x))</math><br><math>\frac{1}{2}\mbox{Li}_ 2(x^2)=\mbox{Li}_ 2(x)+\mbox{Li}_ 2(-x)</math><br>
*  일반적인 곱셈공식<br><math>\frac{1}{n} \operatorname{Li}_2(z^n) = \sum_{k=0}^{n-1}\operatorname{Li}_2\left(e^{2\pi i k/n}z\right)</math><br>
+
*  일반적인 곱셈공식<br><math>\frac{1}{n} \operatorname{Li}_ 2(z^n) = \sum_{k=0}^{n-1}\operatorname{Li}_ 2\left(e^{2\pi i k/n}z \right)</math><br>
*  실수부와 허수부에 대한 덧셈공식<br><math>f(\theta)=\mathfrak{R}(\operatorname{Li}_2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}=\frac{\pi^2}{6}-\frac{\theta(2\pi-\theta)}{4}</math><br><math>Cl_2(\theta)=\mathfrak{I}(\operatorname{Li}_2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}</math><br> 다음 덧셈공식을 만족시킴<br><math>f(n\theta)=n\sum_{k=0}^{n-1}f(\theta+\frac{2k\pi}{n})</math><br><math>Cl_2(n\theta)=n\sum_{k=0}^{n-1}Cl_2(\theta+\frac{2k\pi}{n})</math><br>
+
*  실수부와 허수부에 대한 덧셈공식<br><math>f(\theta)=\mathfrak{R}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}=\frac{\pi^2}{6}-\frac{\theta(2\pi-\theta)}{4}</math><br><math>Cl_ 2(\theta)=\mathfrak{I}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}</math><br> 다음 덧셈공식을 만족시킴<br><math>f(n\theta)=n\sum_{k=0}^{n-1}f(\theta+\frac{2k\pi}{n})</math><br><math>Cl_ 2(n\theta)=n\sum_{k=0}^{n-1}Cl_ 2(\theta+\frac{2k\pi}{n})</math><br>
  
 
* [[로바체프스키 함수|로바체프스키와 클라우센 함수]]의 덧셈공식 참조
 
* [[로바체프스키 함수|로바체프스키와 클라우센 함수]]의 덧셈공식 참조
  
 
+
  
 
+
  
<h5>5항 관계식 (5-term relation)</h5>
+
==5항 관계식 (5-term relation)==
  
*  5항 관계식은 다이로그 함수의 가장 중요한 항등식의 하나이다.<br><math>\mbox{Li}_2(x)+\mbox{Li}_2(y)+\mbox{Li}_2 \left( \frac{1-x}{1-xy} \right)+\mbox{Li}_2(1-xy)+\mbox{Li}_2 \left( \frac{1-y}{1-xy} \right)=\frac{\pi^2}{2}-\log(x)\log(1-x)-\log(y)\log(1-y)+\log (\frac{1-x}{1-xy})\log (\frac{1-y}{1-xy})</math><br>
+
*  5항 관계식은 다이로그 함수의 가장 중요한 항등식의 하나이다.<br><math>\mbox{Li}_ 2(x)+\mbox{Li}_ 2(y)+\mbox{Li}_ 2 \left( \frac{1-x}{1-xy} \right)+\mbox{Li}_ 2(1-xy)+\mbox{Li}_ 2 \left( \frac{1-y}{1-xy} \right)=\frac{\pi^2}{2}-\log(x)\log(1-x)-\log(y)\log(1-y)+\log (\frac{1-x}{1-xy})\log (\frac{1-y}{1-xy})</math><br>
* [[search?q=5%ED%95%AD%20%EA%B4%80%EA%B3%84%EC%8B%9D%20%285-term%20relation%29%20&parent id=3321277|5항 관계식 (5-term relation)]] 항목 참조<br><br><br>
+
* [[search?q=5% ED %95 % AD %20 % EA % B4 %80 % EA % B3 %84 % EC %8 B %9 D %20 %285-term %20 relation %29 %20&parent id=3321277|5항 관계식 (5-term relation)]] 항목 참조<br><br><br>
  
 
+
  
<h5>Special values</h5>
+
==Special values==
  
* 다음 여덟 경우만이 알려져 있으며, 이것이 모든 가능한 경우라고 추측된다
+
* 다음 여덟 경우만이 알려져 있으며, 이것이 모든 가능한 경우라고 추측된다
  
 
<math>\mbox{Li}_{2}(0)=0</math>
 
<math>\mbox{Li}_{2}(0)=0</math>
106번째 줄: 98번째 줄:
 
<math>\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})</math>
 
<math>\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})</math>
  
* 구체적인 계산은 [[다이로그 함수의 special value 계산]] 항목 참조
+
* 구체적인 계산은 [[다이로그 함수의 special value 계산]] 항목 참조
 
* [[황금비]]
 
* [[황금비]]
  
 
+
  
 
+
  
<h5>다이로그 항등식</h5>
+
==다이로그 항등식==
  
*  다이로그 함수를 약간 변형한 [[로저스 다이로그 함수 (Rogers' dilogarithm)|로저스 다이로그 함수 (Roger's dilogarithm)]]<br><math>L(x)=\operatorname{Li}_2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy</math><br>
+
*  다이로그 함수를 약간 변형한 [[로저스 다이로그 함수 (Rogers' dilogarithm)|로저스 다이로그 함수 (Roger's dilogarithm)]]<br><math>L(x)=\operatorname{Li}_ 2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy</math><br>
대수적수 <math>x_i</math>와 유리수 <math>c</math>에 대한 다음과 같은 형태의 항등식을 다이로그 항등식이라 한다<br><math>\sum_{i=1}^{N}L(x_i)=cL(1)</math><br>
+
대수적수 <math>x_i</math>와 유리수 <math>c</math>에 대한 다음과 같은 형태의 항등식을 다이로그 항등식이라 한다<br><math>\sum_{i=1}^{N}L(x_i)=cL(1)</math><br>
* 모든 다이로그 항등식을 5항 관계식을 통하여 이해할 수 있는지의 여부는 다이로그 함수에 대한 중요한 미해결 문제이다
+
* 모든 다이로그 항등식을 5항 관계식을 통하여 이해할 수 있는지의 여부는 다이로그 함수에 대한 중요한 미해결 문제이다
* [[다이로그 항등식 (dilogarithm identities)]]  항목 참조
+
* [[다이로그 항등식 (dilogarithm identities)]] 항목 참조
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">Pochhammer 기호와의 관계</h5>
+
==Pochhammer 기호와의 관계==
  
 
* [[Pochhammer 기호와 캐츠(Kac) 기호|Pochhammer 기호]]<br><math>(q)_{n} : =(q;q)_{n}=(1-q)(1-q^2)\cdots(1-q^n)</math><br>
 
* [[Pochhammer 기호와 캐츠(Kac) 기호|Pochhammer 기호]]<br><math>(q)_{n} : =(q;q)_{n}=(1-q)(1-q^2)\cdots(1-q^n)</math><br>
 
*  로그를 취한뒤 적분을 통해 근사하면 다음을 얻는다<br><math>\int_{0}^{n}\log (1-q^{t})\,dt=\frac{1}{\log q}\int_{1}^{q^{n}}\log (1-x)\,\frac{dx}{x}=\frac{1}{\log q}(\operatorname{Li}_{2}(1)-\operatorname{Li}_{2}(q^{n}))</math><br>
 
*  로그를 취한뒤 적분을 통해 근사하면 다음을 얻는다<br><math>\int_{0}^{n}\log (1-q^{t})\,dt=\frac{1}{\log q}\int_{1}^{q^{n}}\log (1-x)\,\frac{dx}{x}=\frac{1}{\log q}(\operatorname{Li}_{2}(1)-\operatorname{Li}_{2}(q^{n}))</math><br>
  
 
+
  
 
+
  
==== 하위페이지 ====
+
==하위페이지==
  
 
* [[다이로그 함수(dilogarithm)]]<br>
 
* [[다이로그 함수(dilogarithm)]]<br>

2012년 10월 18일 (목) 12:28 판

개요

  • 폴리로그 함수(poylogarithm)의 하나인 special 함수이다.
  • 오일러, 로바체프스키, 아벨 등에 의하여 연구되었다.
  • 정수론, 대수적 K-이론, 3차원 쌍곡다양체, 등각장론 등 현대수학의 많은 분야에서 중요한 역할을 한다.
  • Pochhammer 기호 \((q)_{n} =(q;q)_{n}=(1-q)(1-q^2)\cdots(1-q^n)\) 의 근사식을 구하는 과정에서 자연스럽게 등장한다.
  • 모든 다이로그 항등식 (dilogarithm identities)을 5항 관계식을 통하여 이해할 수 있는지의 여부는 다이로그 함수에 대한 중요한 미해결 문제이다



정의

  • 다이로그 함수는 복소수 \(|z|<1\)에 대하여 다음과 같이 정의됨
    \(\operatorname{Li}_ 2(z)= \sum_{n=1}^\infty {z^n \over n^2}\)
    \(|z|\leq 1\) 에서 고르게 수렴하는 급수이므로, \(|z|\leq 1\)에서 연속
  • 다음과 같은 적분으로 정의하면 해석적으로 확장가능
    \(\operatorname{Li}_ 2(z) = -\int_0^z{{\ln (1-t)}\over t} dt \) for \(z\in \mathbb C-[1,\infty)\)



함수의 그래프

[1]




단위원에서의 실수부와 허수부

  • \(z=e^{i\theta}\), \(0 \leq \theta \leq 2\pi\) 일 때,
    \(\operatorname{Li}_ 2(e^{i\theta})= \sum_{n=1}^\infty \frac{e^{in\theta}}{n^2}=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}+i\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}\)
    \(\mathfrak{R}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}=\frac{\pi^2}{6}-\frac{\theta(2\pi-\theta)}{4}\)
    \(\mathfrak{I}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}=Cl_ 2(\theta)\)
  • 로바체프스키와 클라우센 함수 항목 참조



여러가지 항등식

  • 오일러의 반사공식

\(\mbox{Li}_ 2 \left(x \right)+\mbox{Li}_ 2 \left(1-x \right)= \frac{\pi^2}{6}-\ln(x)\ln(1-x)\), \(0<x<1\)

  • 반전공식
    \(\mbox{Li}_ 2(x)+\mbox{Li}_ 2 \left( \frac{1}{x} \right) = -\frac{\pi^2}{6}-\frac{1}{2}\log^2(-x)\)
  • 란덴의 항등식

\(\mbox{Li}_ 2(x)+\mbox{Li}_ 2 \left( \frac{-x}{1-x} \right)=-\frac{1}{2}\log^2(1-x)\) 또는

\(\mbox{Li}_ 2(1-x)+\mbox{Li}_ 2 \left(1- \frac{1}{x} \right)=-\frac{1}{2}\log^2(x)\)

  • 여기에서 다음의 함수들은 초등함수 부분을 무시하면 같다는 것을 알 수 있음
    \(\mbox{Li}_ 2(x)\),\(\mbox{Li}_ 2 \left(\frac{1}{1-x}\right)\), \(\mbox{Li}_ 2 \left(1- \frac{1}{x} \right)\), \(-\mbox{Li}_ 2 \left( \frac{1}{x} \right)\),\(-\mbox{Li}_ 2 \left(1-x \right)\) , \(-\mbox{Li}_ 2 \left( \frac{x}{x-1} \right)\)
  • 사영기하학과 교차비, Bloch-Wigner dilogarithm 항목들을 참조



곱셈공식

  • 제곱공식
    \(\mbox{Li}_ 2(x^2)=2(\mbox{Li}_ 2(x)+\mbox{Li}_ 2(-x))\)
    \(\frac{1}{2}\mbox{Li}_ 2(x^2)=\mbox{Li}_ 2(x)+\mbox{Li}_ 2(-x)\)
  • 일반적인 곱셈공식
    \(\frac{1}{n} \operatorname{Li}_ 2(z^n) = \sum_{k=0}^{n-1}\operatorname{Li}_ 2\left(e^{2\pi i k/n}z \right)\)
  • 실수부와 허수부에 대한 덧셈공식
    \(f(\theta)=\mathfrak{R}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}=\frac{\pi^2}{6}-\frac{\theta(2\pi-\theta)}{4}\)
    \(Cl_ 2(\theta)=\mathfrak{I}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}\)
    다음 덧셈공식을 만족시킴
    \(f(n\theta)=n\sum_{k=0}^{n-1}f(\theta+\frac{2k\pi}{n})\)
    \(Cl_ 2(n\theta)=n\sum_{k=0}^{n-1}Cl_ 2(\theta+\frac{2k\pi}{n})\)



5항 관계식 (5-term relation)

  • 5항 관계식은 다이로그 함수의 가장 중요한 항등식의 하나이다.
    \(\mbox{Li}_ 2(x)+\mbox{Li}_ 2(y)+\mbox{Li}_ 2 \left( \frac{1-x}{1-xy} \right)+\mbox{Li}_ 2(1-xy)+\mbox{Li}_ 2 \left( \frac{1-y}{1-xy} \right)=\frac{\pi^2}{2}-\log(x)\log(1-x)-\log(y)\log(1-y)+\log (\frac{1-x}{1-xy})\log (\frac{1-y}{1-xy})\)
  • [[search?q=5% ED %95 % AD %20 % EA % B4 %80 % EA % B3 %84 % EC %8 B %9 D %20 %285-term %20 relation %29 %20&parent id=3321277|5항 관계식 (5-term relation)]] 항목 참조



Special values

  • 다음 여덟 경우만이 알려져 있으며, 이것이 모든 가능한 경우라고 추측된다

\(\mbox{Li}_{2}(0)=0\)

\(\mbox{Li}_{2}(1)=\frac{\pi^2}{6}\)

\(\mbox{Li}_{2}(-1)=-\frac{\pi^2}{12}\)

\(\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)\)

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)



다이로그 항등식

  • 다이로그 함수를 약간 변형한 로저스 다이로그 함수 (Roger's dilogarithm)
    \(L(x)=\operatorname{Li}_ 2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy\)
  • 대수적수 \(x_i\)와 유리수 \(c\)에 대한 다음과 같은 형태의 항등식을 다이로그 항등식이라 한다
    \(\sum_{i=1}^{N}L(x_i)=cL(1)\)
  • 모든 다이로그 항등식을 5항 관계식을 통하여 이해할 수 있는지의 여부는 다이로그 함수에 대한 중요한 미해결 문제이다
  • 다이로그 항등식 (dilogarithm identities) 항목 참조



Pochhammer 기호와의 관계

  • Pochhammer 기호
    \((q)_{n} : =(q;q)_{n}=(1-q)(1-q^2)\cdots(1-q^n)\)
  • 로그를 취한뒤 적분을 통해 근사하면 다음을 얻는다
    \(\int_{0}^{n}\log (1-q^{t})\,dt=\frac{1}{\log q}\int_{1}^{q^{n}}\log (1-x)\,\frac{dx}{x}=\frac{1}{\log q}(\operatorname{Li}_{2}(1)-\operatorname{Li}_{2}(q^{n}))\)



하위페이지

 

 

 

재미있는 사실
  • Don Zagier

The dilogarithm is the only mathematical function with a sense of humor.

 

 

 

역사

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

매스매티카 파일 및 계산 리소스

 

 

 

사전 형태의 자료

 

 

관련도서
  • Frontiers in number theory, physics, and geometry II
    • Cartier P., Julia B., Moussa P., Vanhove P.
  • Structural properties of polylogarithms
    • Leonard Lewin
  • Polylogarithms and associated functions
    • Leonard Lewin

 

 

리뷰논문, 에세이, 강의노트

 

 

관련논문[2][3]