"로그 탄젠트 적분(log tangent integral)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
182번째 줄: 182번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
  
*   <br>
 
 
* [http://www.ams.org/notices/201004/rtx100400476p.pdf Seized Opportunities]<br>
 
* [http://www.ams.org/notices/201004/rtx100400476p.pdf Seized Opportunities]<br>
 
** Victor H. Moll, Notices of the AMS, Apr. 2010
 
** Victor H. Moll, Notices of the AMS, Apr. 2010
238번째 줄: 237번째 줄:
 
*  수학과 잡담을 위한 소박한 장소<br>
 
*  수학과 잡담을 위한 소박한 장소<br>
 
** [http://sos440.tistory.com/category/%EC%88%98%ED%95%99%20%EC%9E%A1%EB%8B%B4/%EC%98%A4%EB%8A%98%EC%9D%98%20%EA%B3%84%EC%82%B0 '오늘의 계산'] 카테고리
 
** [http://sos440.tistory.com/category/%EC%88%98%ED%95%99%20%EC%9E%A1%EB%8B%B4/%EC%98%A4%EB%8A%98%EC%9D%98%20%EA%B3%84%EC%82%B0 '오늘의 계산'] 카테고리
** [http://sos440.springnote.com sos440의 스프링노트]
+
** [http://sos440.springnote.com sos440의 스프링노트] , 쓸만한 낙섲
 
* [http://sos440.tistory.com/83 오늘의 계산 12]<br>
 
* [http://sos440.tistory.com/83 오늘의 계산 12]<br>
 
** 수학 잡담/오늘의 계산, 2008/08/10
 
** 수학 잡담/오늘의 계산, 2008/08/10
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]

2010년 5월 21일 (금) 17:13 판

쇼1

\(\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=\frac{\pi}{2}\ln{\frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}\sqrt{2\pi}\)

 

 

증명

[Vardi1988] 참조 

\(\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=\frac{d}{ds}\Gamma(s)\beta(s)|_{s=1}\)임을 보이자. 여기서 \(\Gamma(s)\)는 감마함수,\(\beta(s)\)는 디리클레 베타함수.

이것이 참이라면, Digamma 함수와 디리클레 베타함수에서 얻은 결과를 사용하여 계산할 수 있다.

 

\(\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=\Gamma'(1)\beta(1)+\Gamma(1)\beta'(1)= -\frac{\pi}{4}\gamma+\beta'(1)\)

\(\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}\), \(\psi(1) = -\gamma\,\!\)

 

\(\beta'(1)=\frac{\pi}{4}\gamma+\frac{\pi}{2}\ln(\frac{\Gamma(3/4)}{\Gamma(1/4)}\sqrt{2\pi})\)

 

 

\(F(s)=\sum_{n=1}^{\infty}\frac{f(n)}{n^s}\) 라 하자.

\(\Gamma(s)F(s)=\int_0^{\infty}(\sum_{n=1}^{\infty}f(n)e^{-nt})t^{s-1}\,dt\)

\(z=e^{-t}\) 로 치환하면,

\(\Gamma(s)F(s)=\int_0^{1}(\sum_{n=1}^{\infty}f(n)z^n)(\log\frac{1}{z})^{s-1}\,\frac{dz}{z}\)

 

만약 \(f(n+q)=f(n)\) 을 만족하면 (가령 디리클레 캐릭터의 경우)

\(p(z)=\sum_{n=1}^{q-1}f(n)z^n\)라면,  \(\sum_{n=1}^{\infty}f(n)z^n=\frac{p(z)}{1-z^q}\) 로 쓸 수 있다.

 

이를 이용하면, 

\(\Gamma(s)F(s)=\int_0^{1}\frac{p(z)(\log\frac{1}{z})^{s-1}}{1-z^q}\,\frac{dz}{z}\) 를 얻는다.

 

\(\frac{d}{ds}\Gamma(s)F(s)=\int_0^{1}\frac{p(z)(\log\frac{1}{z})^{s-1}}{1-z^q}\log \log\frac{1}{z} \,\frac{dz}{z}\)

\(s=1\) 에서 \(F(s)\)가  미분가능하다면, 

\(\Gamma'(1)F(1)+\Gamma(1)F'(1)=\int_0^{1}\frac{p(z)}{1-z^q}\log \log\frac{1}{z} \,\frac{dz}{z}\)

\(f\)가 \(f(3)=-1\)인 주기가 4인 디리클레 캐릭터라면, \(q=4\), \(p(z)=z-z^3\)

따라서

\(\int_0^{1}\frac{z-z^3}{1-z^4}\log \log\frac{1}{z} \,\frac{dz}{z}=\int_0^{1}\log \log\frac{1}{z} \,\frac{dz}{1+z^2}=\int_1^{\infty}\log \log u \,\frac{du}{1+u^2}\)

\(=\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx\)


그러므로

\(\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=\beta'(1)- \frac{\pi}{4}\gamma=\frac{\pi}{2}\ln{\frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}\sqrt{2\pi}\)

임이 증명된다.

(증명끝)

 

 

쇼2

\(\int_0^{\pi}\frac{x\sin x}{1+\cos^2 x}dx=\frac{\pi^2}{4}\)

\(\int_0^{\pi}\frac{x\cos x}{1+\sin^2 x}dx=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)

 

 

메모

\(\int_{0}^{\infty}\frac{\ln(x^{2}+1)}{x^{2}+1}=\pi\ln2\)

http://cjackal.tistory.com/109

http://www.artofproblemsolving.com/Forum/viewtopic.php?t=340081

 

 

 

 

Gradshteyn and Ryzhik

 

 

[[란덴변환(Landen's transformation)|]]

재미있는 사실

 

 

역사

 

 

메모

 

 

관련된 다른 주제들

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그