"연분수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 20개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소==
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
 +
* 다음과 같은 형태로 주어지는 수를 연분수라 한다
 +
:<math>a_0+\frac{b_1}{a_1+\frac{b_2}{a_2+\frac{b_3}{a_3+\frac{b_4}{a_4+\frac{b_5}{a_5+\frac{b_6}{a_6+\frac{b_7}{a_7+\frac{b_8}{a_8+\frac{b_9}{a_9+\frac{b_{10}}{a_{10}}}}}}}}}}}</math>
 +
* 다음과 같은 경우를 단순연분수라 한다
 +
:<math>
 +
c=a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{a_3+\frac{1}{a_4+\frac{1}{a_5+\cdots}}}}}
 +
</math>
 +
* 이를 <math>c=[a_0;a_1,a_2,\cdots]</math>로 표현한다
 +
* convergents <math>c_n=[a_0;a_1,a_2,\cdots,a_n]</math>를 정의
 +
* <math>c_n</math>의 분자 <math>p_n</math>와 분모 <math>q_n</math>로 이루어진 수열에 대하여 다음이 성립한다
 +
** <math>
 +
\begin{vmatrix}
 +
p_{n} & p_{n+1} \\
 +
q_{n} & q_{n+1}
 +
\end{vmatrix}=(-1)^{n+1}
 +
</math>
 +
** <math>p_{n+1}=a_{n+1}p_n+p_{n-1}</math>
 +
** <math>q_{n+1}=a_{n+1}q_n+q_{n-1}</math>
 +
* <math>p_n</math>과 <math>q_n</math>에 대해서는 [[Continuant]] 항목을 참조
 +
  
<math>a_0+\frac{b_1}{a_1+\frac{b_2}{a_2+\frac{b_3}{a_3+\frac{b_4}{a_4+\frac{b_5}{a_5+\frac{b_6}{a_6+\frac{b_7}{a_7+\frac{b_8}{a_8+\frac{b_9}{a_9+\frac{b_{10}}{a_{10}}}}}}}}}}}</math>
+
==예==
 +
===루트 2===
 +
* 루트 2의 연분수 전개는 <math>[1;2,2,2,\cdots]</math>, 즉 다음과 같이 주어진다
 +
:<math>\sqrt{2}=1+\cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \ddots}}}</math>
 +
* convergents <math>\{c_n\}_{n\geq 0}</math>는 다음과 같이 주어진다
 +
:<math>
 +
\begin{array}{c|cccccccccc}
 +
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 +
\hline
 +
c_n & 1 & \frac{3}{2} & \frac{7}{5} & \frac{17}{12} & \frac{41}{29} & \frac{99}{70} & \frac{239}{169} & \frac{577}{408} & \frac{1393}{985} & \frac{3363}{2378} \\
 +
\end{array}
 +
</math>
 +
* <math>c_n</math>의 분자 <math>p_n</math>와 분모 <math>q_n</math>로 이루어진 수열을 생각하자
 +
:<math>
 +
\begin{array}{c|cccccccccc}
 +
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 +
\hline
 +
p_n & 1 & 3 & 7 & 17 & 41 & 99 & 239 & 577 & 1393 & 3363 \\
 +
q_n & 1 & 2 & 5 & 12 & 29 & 70 & 169 & 408 & 985 & 2378 \\
 +
\end{array}
 +
</math>
 +
* 다음이 성립한다
 +
** <math>p_n^2-2 q_n^2=(-1)^{n-1}</math>
 +
** <math>
 +
\begin{vmatrix}
 +
p_{n} & p_{n+1} \\
 +
q_{n} & q_{n+1}
 +
\end{vmatrix}=(-1)^{n-1}
 +
</math>
 +
** <math>p_{n+1}=2p_n+p_{n-1}, p_0=1, p_1=3</math>
 +
** <math>q_{n+1}=2q_n+q_{n-1}, q_0=1, q_1=2</math>
 +
* [[2의 제곱근(루트 2, 피타고라스 상수)]]
 +
===황금비===
 +
* 황금비의 연분수 전개는 <math>[1;1,1,1,\cdots]</math>, 즉 다음과 같이 주어진다
 +
:<math>\frac{1+\sqrt{5}}{2}=1+\cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \ddots}}}</math>
 +
* convergents <math>\{c_n\}_{n\geq 0}</math>는 다음과 같이 주어진다
 +
:<math>
 +
\begin{array}{c|cccccccccc}
 +
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 +
\hline
 +
c_n & 1 & 2 & \frac{3}{2} & \frac{5}{3} & \frac{8}{5} & \frac{13}{8} & \frac{21}{13} & \frac{34}{21} & \frac{55}{34} & \frac{89}{55} \\
 +
\end{array}
 +
</math>
 +
* <math>c_n</math>의 분자 <math>p_n</math>와 분모 <math>q_n</math>로 이루어진 수열을 생각하자
 +
:<math>
 +
\begin{array}{c|cccccccccc}
 +
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 +
\hline
 +
p_n & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 \\
 +
q_n & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 \\
 +
\end{array}
 +
</math>
 +
* 다음이 성립한다
 +
** <math>
 +
\begin{vmatrix}
 +
p_{n} & p_{n+1} \\
 +
q_{n} & q_{n+1}
 +
\end{vmatrix}=(-1)^{n-1}
 +
</math>
 +
** <math>p_{n+1}=p_n+p_{n-1}, p_0=1, p_1=2</math>
 +
** <math>q_{n+1}=q_n+q_{n-1}, q_0=1, q_1=1</math>
  
 
 
 
 
 
 
==역사==
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
 
 
 
 
 
 
  
 
==메모==
 
==메모==
  
 
+
  
 
* Math Overflow http://mathoverflow.net/search?q=
 
* Math Overflow http://mathoverflow.net/search?q=
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
40번째 줄: 99번째 줄:
 
* [[로저스-라마누잔 연분수]]
 
* [[로저스-라마누잔 연분수]]
 
* [[타자의 타율과 연분수]]
 
* [[타자의 타율과 연분수]]
 
+
* [[원주율과 연분수 Brouncker 의 공식]]
 
+
* [[킨친 상수]]
 
+
* [[2의 제곱근(루트 2, 피타고라스 상수)]]
 
+
* [[자렘바의 추측]]
 
 
==수학용어번역==
 
 
 
* 단어사전<br>
 
** http://www.google.com/dictionary?langpair=en|ko&q=
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxaVhxcXc2U1hoMU0/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxaVhxcXc2U1hoMU0/edit
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
 
 
 
 
 
 
 
 
 
 
==사전 형태의 자료==
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
 
 
 
 
==리뷰논문, 에세이, 강의노트==
 
 
 
 
 
 
 
  
  
 +
==관련논문==
 +
* Bengoechea, Paloma. ‘On a Theorem of Serret on Continued Fractions’. arXiv:1301.5944 [math], 24 January 2013. http://arxiv.org/abs/1301.5944.
  
 
 
  
 
 
 
[[분류:정수론]]
 
[[분류:정수론]]
 +
[[분류:연분수]]

2020년 12월 28일 (월) 02:44 기준 최신판

개요

  • 다음과 같은 형태로 주어지는 수를 연분수라 한다

\[a_0+\frac{b_1}{a_1+\frac{b_2}{a_2+\frac{b_3}{a_3+\frac{b_4}{a_4+\frac{b_5}{a_5+\frac{b_6}{a_6+\frac{b_7}{a_7+\frac{b_8}{a_8+\frac{b_9}{a_9+\frac{b_{10}}{a_{10}}}}}}}}}}}\]

  • 다음과 같은 경우를 단순연분수라 한다

\[ c=a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{a_3+\frac{1}{a_4+\frac{1}{a_5+\cdots}}}}} \]

  • 이를 \(c=[a_0;a_1,a_2,\cdots]\)로 표현한다
  • convergents \(c_n=[a_0;a_1,a_2,\cdots,a_n]\)를 정의
  • \(c_n\)의 분자 \(p_n\)와 분모 \(q_n\)로 이루어진 수열에 대하여 다음이 성립한다
    • \( \begin{vmatrix} p_{n} & p_{n+1} \\ q_{n} & q_{n+1} \end{vmatrix}=(-1)^{n+1} \)
    • \(p_{n+1}=a_{n+1}p_n+p_{n-1}\)
    • \(q_{n+1}=a_{n+1}q_n+q_{n-1}\)
  • \(p_n\)과 \(q_n\)에 대해서는 Continuant 항목을 참조


루트 2

  • 루트 2의 연분수 전개는 \([1;2,2,2,\cdots]\), 즉 다음과 같이 주어진다

\[\sqrt{2}=1+\cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \ddots}}}\]

  • convergents \(\{c_n\}_{n\geq 0}\)는 다음과 같이 주어진다

\[ \begin{array}{c|cccccccccc} n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline c_n & 1 & \frac{3}{2} & \frac{7}{5} & \frac{17}{12} & \frac{41}{29} & \frac{99}{70} & \frac{239}{169} & \frac{577}{408} & \frac{1393}{985} & \frac{3363}{2378} \\ \end{array} \]

  • \(c_n\)의 분자 \(p_n\)와 분모 \(q_n\)로 이루어진 수열을 생각하자

\[ \begin{array}{c|cccccccccc} n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline p_n & 1 & 3 & 7 & 17 & 41 & 99 & 239 & 577 & 1393 & 3363 \\ q_n & 1 & 2 & 5 & 12 & 29 & 70 & 169 & 408 & 985 & 2378 \\ \end{array} \]

  • 다음이 성립한다
    • \(p_n^2-2 q_n^2=(-1)^{n-1}\)
    • \( \begin{vmatrix} p_{n} & p_{n+1} \\ q_{n} & q_{n+1} \end{vmatrix}=(-1)^{n-1} \)
    • \(p_{n+1}=2p_n+p_{n-1}, p_0=1, p_1=3\)
    • \(q_{n+1}=2q_n+q_{n-1}, q_0=1, q_1=2\)
  • 2의 제곱근(루트 2, 피타고라스 상수)

황금비

  • 황금비의 연분수 전개는 \([1;1,1,1,\cdots]\), 즉 다음과 같이 주어진다

\[\frac{1+\sqrt{5}}{2}=1+\cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \ddots}}}\]

  • convergents \(\{c_n\}_{n\geq 0}\)는 다음과 같이 주어진다

\[ \begin{array}{c|cccccccccc} n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline c_n & 1 & 2 & \frac{3}{2} & \frac{5}{3} & \frac{8}{5} & \frac{13}{8} & \frac{21}{13} & \frac{34}{21} & \frac{55}{34} & \frac{89}{55} \\ \end{array} \]

  • \(c_n\)의 분자 \(p_n\)와 분모 \(q_n\)로 이루어진 수열을 생각하자

\[ \begin{array}{c|cccccccccc} n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline p_n & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 \\ q_n & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 \\ \end{array} \]

  • 다음이 성립한다
    • \( \begin{vmatrix} p_{n} & p_{n+1} \\ q_{n} & q_{n+1} \end{vmatrix}=(-1)^{n-1} \)
    • \(p_{n+1}=p_n+p_{n-1}, p_0=1, p_1=2\)
    • \(q_{n+1}=q_n+q_{n-1}, q_0=1, q_1=1\)


메모



관련된 항목들

매스매티카 파일 및 계산 리소스


관련논문