"조화수열과 조화급수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 11개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 
  
 
 
  
 
+
==개요==
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
+
*  조화수열의 정의 :<math>H_{n}=\sum_{k=1}^{n}\frac{1}{k}</math>
 +
* [[오일러상수, 감마]][[오일러상수, 감마|오일러상수]] :<math>\lim_{n\to\infty}H_{n}-\ln n=\gamma</math>
 +
:<math>\gamma=0.577215664901532860606512090\cdots</math>
  
*  조화수열의 정의<br><math>H_{n}=\sum_{k=1}^{n}\frac{1}{k}</math><br>
+
==근사 공식==
  
* [[오일러상수, 감마]]<br>[[오일러상수, 감마|]]<math>\lim_{n\to\infty}H_{n}-\ln n=\gamma</math><br>
+
* [[오일러-맥클로린 공식]] 을 통해 다음을 얻는다 :<math>H_{n}=\sum_{k=1}^{n}\frac{1}{k}\sim \log n +\gamma+\frac{1}{2n}-\sum_{s=1}^{\infty}\frac{B_{2s}}{(2s)n^{2s}}</math>
 +
* 다음이 성립한다 :<math>H_{n}= \log n +\gamma+ O(1/n)</math>
  
 
+
==성질==
 
 
<math>\gamma=0.577215664901532860606512090\cdots</math>
 
 
 
 
 
 
 
<h5 style="line-height: 2em; margin: 0px;">성질</h5>
 
  
 
<math>H_{n-1}=H_n-\frac{1}{n}</math>
 
<math>H_{n-1}=H_n-\frac{1}{n}</math>
  
<math>H_{n-1}^2=(H_n-\frac{1}{n})^2=H_n^2+\frac{1}{n^2}-\frac{2H_n}{n}</math>
+
<math>H_ {n-1}^2=(H_n-\frac{1}{n})^2=H_n^2+\frac{1}{n^2}-\frac{2H_n}{n}</math>
  
 
+
  
 
+
  
<h5 style="line-height: 2em; margin: 0px;">생성함수</h5>
+
==생성함수==
  
 
<math>\sum_{n=1}^\infty H_nz^n  =  \frac {-\ln(1-z)}{1-z}</math>
 
<math>\sum_{n=1}^\infty H_nz^n  =  \frac {-\ln(1-z)}{1-z}</math>
  
 
+
  
 
+
  
<h5 style="line-height: 2em; margin: 0px;">생성함수의 응용</h5>
+
==생성함수의 응용==
  
 
<math>\sum_{n=1}^\infty \frac{H_n}{n+1}z^{n+1}  =\frac{1}{2}\log^2(1-z)</math>
 
<math>\sum_{n=1}^\infty \frac{H_n}{n+1}z^{n+1}  =\frac{1}{2}\log^2(1-z)</math>
  
<math>\sum_{n=1}^\infty \frac{H_n}{n}z^n  =\operatorname{Li}_2(z)+\frac{1}{2}\log^2(1-z)</math>
+
<math>\sum_{n=1}^\infty \frac{H_n}{n}z^n  =\operatorname{Li}_ 2(z)+\frac{1}{2}\log^2(1-z)</math>
  
 
+
  
<math>z=e^{it}</math>, <math>0 \leq t \leq \pi</math> 에서 
+
<math>z=e^{it}</math>, <math>0 \leq t \leq \pi</math> 에서
  
 
위 식의 실수부를 취하면, 각각 다음 식을 얻는다.
 
위 식의 실수부를 취하면, 각각 다음 식을 얻는다.
49번째 줄: 44번째 줄:
 
<math>\sum_{n=1}^\infty \frac{H_n}{n+1}\sin (n+1)t=\frac{1}{2}(t-\pi)\log(2\sin\frac{t}{2})</math>
 
<math>\sum_{n=1}^\infty \frac{H_n}{n+1}\sin (n+1)t=\frac{1}{2}(t-\pi)\log(2\sin\frac{t}{2})</math>
  
<math>\sum_{n=1}^\infty \frac{H_n}{n}\sin nt=\operatorname{Cl}_2(t)+\frac{1}{2}(t-\pi)\log(2\sin\frac{t}{2})</math>
+
<math>\sum_{n=1}^\infty \frac{H_n}{n}\sin nt=\operatorname{Cl}_ 2(t)+\frac{1}{2}(t-\pi)\log(2\sin\frac{t}{2})</math>
  
 
[[로바체프스키 함수|로바체프스키와 클라우센 함수]]
 
[[로바체프스키 함수|로바체프스키와 클라우센 함수]]
  
 
+
  
 
+
  
 
+
  
 
+
  
<h5 style="line-height: 2em; margin: 0px;">조화수열과 급수</h5>
+
==조화수열과 급수==
  
 
<math>\sum_{n=1}^{\infty}\frac{H_n^2}{(n+1)^2}=\frac{11\pi^4}{360}</math>
 
<math>\sum_{n=1}^{\infty}\frac{H_n^2}{(n+1)^2}=\frac{11\pi^4}{360}</math>
69번째 줄: 64번째 줄:
 
<math>\sum_{n=1}^{\infty}\frac{H_n}{n^3}=\frac{\pi^4}{72}</math>
 
<math>\sum_{n=1}^{\infty}\frac{H_n}{n^3}=\frac{\pi^4}{72}</math>
  
 
+
  
 
+
  
<h5 style="line-height: 2em; margin: 0px;">역사</h5>
+
==역사==
  
 
+
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
*  
+
*
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
+
==메모==
  
 
http://sos440.tistory.com/202
 
http://sos440.tistory.com/202
91번째 줄: 86번째 줄:
 
http://sos440.tistory.com/200
 
http://sos440.tistory.com/200
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
+
==관련된 항목들==
  
* [[오일러상수, 감마]]<br>
+
* [[오일러상수, 감마]]
* [[조화급수와 조화 평균에서 '조화'란?]]<br>
+
* [[조화급수와 조화 평균에서 '조화'란?]]
* [[다이감마 함수(digamma function)|다이감마와 폴리감마 함수(digamma and polygamma functions)]]<br>
+
* [[다이감마 함수(digamma function)|다이감마와 폴리감마 함수(digamma and polygamma functions)]]
* [[로그 사인 적분 (log sine integrals)]]<br>
+
* [[로그 사인 적분 (log sine integrals)]]
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
  
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
+
==사전 형태의 자료==
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
+
* http://ko.wikipedia.org/wiki/조화급수
 
+
* http://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
 
 
 
* [http://ko.wikipedia.org/wiki/%EC%A1%B0%ED%99%94%EA%B8%89%EC%88%98 http://ko.wikipedia.org/wiki/조화급수]
 
* [http://en.wikipedia.org/wiki/Harmonic_series_%28mathematics%29 http://en.wikipedia.org/wiki/Harmonic_series_(mathematics)]
 
 
* http://en.wikipedia.org/wiki/Harmonic_number
 
* http://en.wikipedia.org/wiki/Harmonic_number
 
* http://mathworld.wolfram.com/HarmonicNumber.html
 
* http://mathworld.wolfram.com/HarmonicNumber.html
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
+
==관련논문==
  
* [http://www.jstor.org/stable/2160718 On an Intriguing Integral and Some Series Related to ζ(4)]<br>
+
* [http://www.jstor.org/stable/2160718 On an Intriguing Integral and Some Series Related to \[Zeta](4)]
** David Borwein and Jonathan M. Borwein, Proceedings of the American Mathematical Society, Vol. 123, No. 4 (Apr., 1995), pp. 1191-1198
+
** David Borwein and Jonathan M. Borwein, Proceedings of the American Mathematical Society, Vol. 123, No. 4 (Apr., 1995), pp. 1191-1198
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
* http://dx.doi.org/
 +
[[분류:미적분학]]
  
 
+
==메타데이터==
 
+
===위키데이터===
 
+
* ID :  [https://www.wikidata.org/wiki/Q1173341 Q1173341]
 
+
===Spacy 패턴 목록===
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
+
* [{'LOWER': 'harmonic'}, {'LEMMA': 'series'}]
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
 
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
 
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://math.dongascience.com/ 수학동아]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://betterexplained.com/ BetterExplained]
 

2021년 2월 17일 (수) 04:59 기준 최신판


개요

\[\gamma=0.577215664901532860606512090\cdots\]

근사 공식

  • 오일러-맥클로린 공식 을 통해 다음을 얻는다 \[H_{n}=\sum_{k=1}^{n}\frac{1}{k}\sim \log n +\gamma+\frac{1}{2n}-\sum_{s=1}^{\infty}\frac{B_{2s}}{(2s)n^{2s}}\]
  • 다음이 성립한다 \[H_{n}= \log n +\gamma+ O(1/n)\]

성질

\(H_{n-1}=H_n-\frac{1}{n}\)

\(H_ {n-1}^2=(H_n-\frac{1}{n})^2=H_n^2+\frac{1}{n^2}-\frac{2H_n}{n}\)



생성함수

\(\sum_{n=1}^\infty H_nz^n = \frac {-\ln(1-z)}{1-z}\)



생성함수의 응용

\(\sum_{n=1}^\infty \frac{H_n}{n+1}z^{n+1} =\frac{1}{2}\log^2(1-z)\)

\(\sum_{n=1}^\infty \frac{H_n}{n}z^n =\operatorname{Li}_ 2(z)+\frac{1}{2}\log^2(1-z)\)


\(z=e^{it}\), \(0 \leq t \leq \pi\) 에서

위 식의 실수부를 취하면, 각각 다음 식을 얻는다.

\(\sum_{n=1}^\infty \frac{H_n}{n+1}\sin (n+1)t=\frac{1}{2}(t-\pi)\log(2\sin\frac{t}{2})\)

\(\sum_{n=1}^\infty \frac{H_n}{n}\sin nt=\operatorname{Cl}_ 2(t)+\frac{1}{2}(t-\pi)\log(2\sin\frac{t}{2})\)

로바체프스키와 클라우센 함수





조화수열과 급수

\(\sum_{n=1}^{\infty}\frac{H_n^2}{(n+1)^2}=\frac{11\pi^4}{360}\)

\(\sum_{n=1}^{\infty}\frac{H_n^2}{n^2}=\frac{17\pi^4}{360}\)

\(\sum_{n=1}^{\infty}\frac{H_n}{n^3}=\frac{\pi^4}{72}\)



역사



메모

http://sos440.tistory.com/202

http://sos440.tistory.com/200


관련된 항목들




사전 형태의 자료


관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'harmonic'}, {'LEMMA': 'series'}]