"클리포드 대수와 스피너"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 22개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
==개요==
 +
* [[해밀턴의 사원수(quarternions)]]의 일반화
 +
* 직교군의 스핀 표현 (spin representation) 을 구성하기 위한 도구
 +
  
 
+
 
 
 
 
 
 
<h5>개요</h5>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5>클리포드 대수</h5>
 
  
 +
==클리포드 대수==
 +
* <math>K:</math> 표수가 2가 아닌 체
 +
* <math>V:</math> <math>K</math>위에 정의된 유한차원 벡터공간
 
* 이차형식이 주어진 벡터공간 <math>(V,Q)</math>
 
* 이차형식이 주어진 벡터공간 <math>(V,Q)</math>
* Q : non-degenerate quadratic form, defines a symmetric bilinear form <math>\langle x,y \rangle</math>
+
** <math>Q:</math>  <math>V</math>에 정의된 비퇴화된 이차형식
* 클리포드 대수: associative algebra generated by vectors in V with relations<br>
+
** 대칭겹선형 형식 <math>\langle x,y \rangle</math>
 +
* 클리포드 대수는 <math>V</math>의 원소들로 생성되는 결합대수(associative algebra)로 다음 관계를 만족시킨다
 
** <math>v^2=Q(v)</math>
 
** <math>v^2=Q(v)</math>
 
** <math>vw+wv=2\langle w,v\rangle</math>
 
** <math>vw+wv=2\langle w,v\rangle</math>
* exterior algebra 의 양자화로 이해하기도 한다
+
* [[외대수(exterior algebra)와 겹선형대수(multilinear algebra)|외대수(exterior algebra,그라스만 대수)]]의 양자화로 이해하기도 한다
 
 
 
 
  
 
+
==스피너==
  
 
+
* 클리포드 대수의 벡터공간 <math>W</math> 에서의 표현(representation)을 생각하자
 
 
<h5>스피너</h5>
 
 
 
* 클리포드 대수의 벡터공간 <math>W</math> 에서의 표현을 생각하자
 
 
* W의 원소를 스피너라 부른다
 
* W의 원소를 스피너라 부른다
  
 
+
 
 
 
 
  
 
+
  
<h5>파울리 스피너</h5>
+
==파울리 스피너==
  
* 실수체 위에 정의된 8차원 대수
+
* 실수체 위에 정의된 8차원 클리포드 대수
 +
* [[파울리 행렬]] 로부터 구성할 수 있다
 
* 3차원 유클리드 공간 <math>E_{3}</math>의 클리포드 대수 <math>C(E_{3})</math>와 동형이다
 
* 3차원 유클리드 공간 <math>E_{3}</math>의 클리포드 대수 <math>C(E_{3})</math>와 동형이다
* http://en.wikipedia.org/wiki/Spinors_in_three_dimensions
+
* SO(3)의 사영표현을 얻을 수 있다
* spinor = a vector in two-dimensional space over complex number field
 
* Hermitian dot product is given on the vector space
 
* orthogonal group의 사영표현을 얻을 수 있다
 
  
 
+
  
 
+
  
 
+
==디랙 스피너==
 
 
<h5>디랙 스피너</h5>
 
  
 
* 16차원 실대수
 
* 16차원 실대수
* 4차원 민코프스키 공간 <math>E_{3,1}</math>의 클리포드 대수 <math>C(E_{3,1})</math> 와 동형
+
* 4차원 민코프스키 공간 <math>E_{3,1}</math>의 클리포드 대수 <math>C(E_{3,1})</math> 와 동형
* <math>\gamma_{\mu}^2=\epsilon_{\mu}</math>, <math>\gamma_{\mu}\gamma_{\nu}+\gamma_{\nu}\gamma_{\mu}=0</math><math>\epsilon_{0}=1, \epsilon_{i}=-1</math>
+
* <math>\gamma_{\mu}^2=\epsilon_{\mu}</math>, <math>\gamma_{\mu}\gamma_{\nu}+\gamma_{\nu}\gamma_{\mu}=0</math>, <math>\epsilon_{0}=1, \epsilon_{i}=-1</math>
 
* 4차원 표현이 존재한다
 
* 4차원 표현이 존재한다
 
* 로렌츠 군의 사영표현을 얻을 수 있다
 
* 로렌츠 군의 사영표현을 얻을 수 있다
 
* 로렌츠 군의 universal covering <math>H=SL(2,\mathbb{C})</math> 의 표현
 
* 로렌츠 군의 universal covering <math>H=SL(2,\mathbb{C})</math> 의 표현
 +
* [[디랙 행렬]]
  
 
 
  
 
+
===디랙의 동기===
 +
* 디랙은 양자역학의 상대론적 파동방정식([[디랙 방정식]])을 찾는 과정에서 디랙 스피너를 도입하였다
 +
* 여기서 [[라플라시안(Laplacian)]] 연산자의 제곱근을 찾는 문제를 생각하게 된다
 +
:<math>
 +
\sqrt{\frac{\partial^2f}{\partial x_1^2} + \cdots+\frac{\partial^2 f}{\partial x_n^2}}=?
 +
</math>
 +
* 이 문제는 이차형식 <math>Q</math>이 선형형식의 완전제곱으로 쓰여질 수 있다는 클리포드 대수의 일반적인 성질과 관련이 있다
 +
* <math>n</math>차원 벡터공간 <math>V</math>의 기저를 <math>e_1,\cdots, e_n</math>라 두면, 클리포드 대수에서 다음 등식이 성립한다
 +
:<math>
 +
Q(a_1e_1+\cdots+a_ne_n)=(a_1e_1+\cdots+a_ne_n)^2
 +
</math>
 +
* 디랙 스피너를 도입하면 라플라시안의 제곱근에 해당하는 대상을 찾을 수 있게 된다
 +
  
<h5>역사</h5>
+
==역사==
  
 
+
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
  
 
+
  
 
+
 
 
<h5>메모</h5>
 
 
 
 
 
  
 +
==메모==
 
* Math Overflow http://mathoverflow.net/search?q=
 
* Math Overflow http://mathoverflow.net/search?q=
  
 
+
  
 
+
  
<h5>관련된 항목들</h5>
+
==관련된 항목들==
  
 
+
* [[디랙 방정식]]
 +
* [[스핀과 파울리의 배타원리]]
 +
* [[하이젠베르크 군과 대수]]
  
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
  
*  단어사전<br>
+
==사전 형태의 자료==
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5>사전 형태의 자료</h5>
 
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
* http://en.wikipedia.org/wiki/
+
* http://en.wikipedia.org/wiki/Exterior_algebra
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
+
* http://en.wikipedia.org/wiki/Clifford_algebra
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
+
* http://en.wikipedia.org/wiki/Spinors_in_three_dimensions
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
  
 
+
 
 
 
 
 
 
<h5>리뷰논문, 에세이, 강의노트</h5>
 
  
 +
==리뷰, 에세이, 강의노트==
 +
* James M. Chappell, Azhar Iqbal, John G. Hartnett, Derek Abbott, The vector algebra war: a historical perspective, arXiv:1509.00501 [physics.hist-ph], August 29 2015, http://arxiv.org/abs/1509.00501, 10.1109/ACCESS.2016.2538262, http://dx.doi.org/10.1109/ACCESS.2016.2538262, IEEE Access , vol.PP, no.99, pp.1-1, 2016
 +
* Chappell, James M., Azhar Iqbal, John G. Hartnett, and Derek Abbott. “The Vector Algebra War: A Historical Perspective.” arXiv:1509.00501 [physics], August 29, 2015. http://arxiv.org/abs/1509.00501.
 +
* Sobczyk, Garret. “Part II: Spacetime Algebra of Dirac Spinors.” arXiv:1507.06609 [math-Ph, Physics:quant-Ph], July 21, 2015. http://arxiv.org/abs/1507.06609.
 +
* ———. “Part I: Vector Analysis of Spinors.” arXiv:1507.06608 [math-Ph, Physics:quant-Ph], July 21, 2015. http://arxiv.org/abs/1507.06608.
 +
*Peter Woit의 강의 노트
 +
**[http://www.math.columbia.edu/~woit/notes17.pdf Clifford Algebras]
 +
**[http://www.math.columbia.edu/~woit/notes18.pdf Spin Groups]
 +
**[http://www.math.columbia.edu/~woit/notes19.pdf The Spinor Representation]
 
* Lachièze-Rey, Marc. 2009. “Spin and Clifford Algebras, an Introduction”. <em>Advances in Applied Clifford Algebras</em> 19 (3-4): 687-720. doi:10.1007/s00006-009-0187-y.
 
* Lachièze-Rey, Marc. 2009. “Spin and Clifford Algebras, an Introduction”. <em>Advances in Applied Clifford Algebras</em> 19 (3-4): 687-720. doi:10.1007/s00006-009-0187-y.
 
* [http://www.math.ucla.edu/%7Evsv/papers/ch5.pdf http://www.math.ucla.edu/~vsv/papers/ch5.pdf]
 
* [http://www.math.ucla.edu/%7Evsv/papers/ch5.pdf http://www.math.ucla.edu/~vsv/papers/ch5.pdf]
 
 
* Frescura, F. A. M. 1981. “Geometric interpretation of the Pauli spinor”. <em>American Journal of Physics</em> 49: 152. doi:[http://dx.doi.org/10.1119/1.12548 10.1119/1.12548.]
 
* Frescura, F. A. M. 1981. “Geometric interpretation of the Pauli spinor”. <em>American Journal of Physics</em> 49: 152. doi:[http://dx.doi.org/10.1119/1.12548 10.1119/1.12548.]
 
* Vivarelli, Maria Dina. 1984. “Development of spinor descriptions of rotational mechanics from Euler’s rigid body displacement theorem”. <em>Celestial Mechanics</em> 32 (3월): 193-207. doi:[http://dx.doi.org/10.1007/BF01236599 10.1007/BF01236599].
 
* Vivarelli, Maria Dina. 1984. “Development of spinor descriptions of rotational mechanics from Euler’s rigid body displacement theorem”. <em>Celestial Mechanics</em> 32 (3월): 193-207. doi:[http://dx.doi.org/10.1007/BF01236599 10.1007/BF01236599].
 
* Coquereaux, Robert. 2005. “Clifford algebras, spinors and fundamental interactions : Twenty Years After”. <em>arXiv:math-ph/0509040</em> (9월 19). http://arxiv.org/abs/math-ph/0509040.
 
* Coquereaux, Robert. 2005. “Clifford algebras, spinors and fundamental interactions : Twenty Years After”. <em>arXiv:math-ph/0509040</em> (9월 19). http://arxiv.org/abs/math-ph/0509040.
 +
[[분류:리군과 리대수]]
 +
[[분류:수리물리학]]
  
 
+
==메타데이터==
 
+
===위키데이터===
 
+
* ID :  [https://www.wikidata.org/wiki/Q1196652 Q1196652]
 
+
===Spacy 패턴 목록===
<h5>관련논문</h5>
+
* [{'LOWER': 'exterior'}, {'LEMMA': 'algebra'}]
 
+
* [{'LOWER': 'grassmann'}, {'LEMMA': 'algebra'}]
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
<h5>관련도서</h5>
 
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 

2021년 2월 17일 (수) 05:03 기준 최신판

개요



클리포드 대수

  • \(K:\) 표수가 2가 아닌 체
  • \(V:\) \(K\)위에 정의된 유한차원 벡터공간
  • 이차형식이 주어진 벡터공간 \((V,Q)\)
    • \(Q:\) \(V\)에 정의된 비퇴화된 이차형식
    • 대칭겹선형 형식 \(\langle x,y \rangle\)
  • 클리포드 대수는 \(V\)의 원소들로 생성되는 결합대수(associative algebra)로 다음 관계를 만족시킨다
    • \(v^2=Q(v)\)
    • \(vw+wv=2\langle w,v\rangle\)
  • 외대수(exterior algebra,그라스만 대수)의 양자화로 이해하기도 한다

스피너

  • 클리포드 대수의 벡터공간 \(W\) 에서의 표현(representation)을 생각하자
  • W의 원소를 스피너라 부른다



파울리 스피너

  • 실수체 위에 정의된 8차원 클리포드 대수
  • 파울리 행렬 로부터 구성할 수 있다
  • 3차원 유클리드 공간 \(E_{3}\)의 클리포드 대수 \(C(E_{3})\)와 동형이다
  • SO(3)의 사영표현을 얻을 수 있다



디랙 스피너

  • 16차원 실대수
  • 4차원 민코프스키 공간 \(E_{3,1}\)의 클리포드 대수 \(C(E_{3,1})\) 와 동형
  • \(\gamma_{\mu}^2=\epsilon_{\mu}\), \(\gamma_{\mu}\gamma_{\nu}+\gamma_{\nu}\gamma_{\mu}=0\), \(\epsilon_{0}=1, \epsilon_{i}=-1\)
  • 4차원 표현이 존재한다
  • 로렌츠 군의 사영표현을 얻을 수 있다
  • 로렌츠 군의 universal covering \(H=SL(2,\mathbb{C})\) 의 표현
  • 디랙 행렬


디랙의 동기

  • 디랙은 양자역학의 상대론적 파동방정식(디랙 방정식)을 찾는 과정에서 디랙 스피너를 도입하였다
  • 여기서 라플라시안(Laplacian) 연산자의 제곱근을 찾는 문제를 생각하게 된다

\[ \sqrt{\frac{\partial^2f}{\partial x_1^2} + \cdots+\frac{\partial^2 f}{\partial x_n^2}}=? \]

  • 이 문제는 이차형식 \(Q\)이 선형형식의 완전제곱으로 쓰여질 수 있다는 클리포드 대수의 일반적인 성질과 관련이 있다
  • \(n\)차원 벡터공간 \(V\)의 기저를 \(e_1,\cdots, e_n\)라 두면, 클리포드 대수에서 다음 등식이 성립한다

\[ Q(a_1e_1+\cdots+a_ne_n)=(a_1e_1+\cdots+a_ne_n)^2 \]

  • 디랙 스피너를 도입하면 라플라시안의 제곱근에 해당하는 대상을 찾을 수 있게 된다


역사



메모



관련된 항목들



사전 형태의 자료


리뷰, 에세이, 강의노트

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'exterior'}, {'LEMMA': 'algebra'}]
  • [{'LOWER': 'grassmann'}, {'LEMMA': 'algebra'}]