"타원적분"의 두 판 사이의 차이
(피타고라스님이 이 페이지를 개설하였습니다.) |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 54개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
+ | ==개요== | ||
+ | * 먼저 [[타원적분론 입문]] 참조 | ||
+ | * <math>R(x,y)</math>는 <math>x,y</math>의 유리함수이고, <math>y^2</math>은 <math>x</math>의 3차 또는 4차식:<math>\int R(x,\sqrt{ax^3+bx^2+cx+d}) \,dx</math> 또는:<math>\int R(x,\sqrt{ax^4+bx^3+cx^2+dx+e}) \,dx</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==타원 둘레의 길이== | ||
+ | |||
+ | * 역사적으로 [[타원 둘레의 길이]]를 구하는 적분에서 그 이름이 기원함. | ||
+ | * 타원 <math>\frac{x^2}{a^2}+\frac{y^2}{b^2}=1</math>의 둘레의 길이는 <math>4aE(k)</math> 로 주어짐.:<math>k=\sqrt{1-\frac{b^2}{a^2}}</math>:<math>E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math> | ||
+ | |||
+ | |||
+ | ==정의== | ||
+ | |||
+ | * 일반적으로 다음과 같은 형태로 주어지는 적분을 타원적분이라 부름 | ||
+ | :<math>\int R(x,y)\,dx</math> | ||
+ | 여기서 <math>R(x,y)</math>는 <math>x,y</math>의 유리함수, <math>y^2</math>= 중근을 갖지 않는 <math>x</math>의 3차식 또는 4차식. | ||
+ | |||
+ | * 예를 들자면, | ||
+ | :<math>\int \frac{dx}{\sqrt{1-x^4}}</math> | ||
+ | :<math>\int \frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math> | ||
+ | |||
+ | |||
+ | |||
+ | ==일종타원적분과 이종타원적분== | ||
+ | |||
+ | * [[제1종타원적분 K (complete elliptic integral of the first kind)]]:<math>K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}=\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math>:<math>K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math> | ||
+ | * [[제2종타원적분 E (complete elliptic integral of the second kind)]]:<math>E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math>:<math>E(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},-\frac{1}{2};1;k^2)</math> | ||
+ | * <math>\,_2F_1(a,b;c;z)</math>는 [[초기하급수(Hypergeometric series)]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==르장드르의 항등식== | ||
+ | |||
+ | * 일종타원적분과 이종타원적분 사이에는 다음과 같은 관계가 성립 | ||
+ | :<math>E(k)K'(k)+E'(k)K(k)-K(k)K'(k)=\frac{\pi}{2}</math> | ||
+ | |||
+ | 또는 <math>\theta+\phi=\frac{\pi}{2}</math> 에 대하여 | ||
+ | :<math>E(\sin\theta)K(\sin\phi)+E(\sin\phi)K(\sin\theta)-K(\sin\theta)K(\sin\phi)=\frac{\pi}{2}</math> | ||
+ | |||
+ | * 특별히 다음과 같은 관계가 성립함 | ||
+ | :<math>2K(\frac{1}{\sqrt{2}})E(\frac{1}{\sqrt{2}})-K(\frac{1}{\sqrt{2}})^2=\frac{\pi}{2}</math> | ||
+ | |||
+ | [[산술기하평균함수(AGM)와 파이값의 계산]]에 응용 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==덧셈공식== | ||
+ | |||
+ | * 파그나노의 공식 ([[렘니스케이트 곡선과 Lemniscatomy]] 항목 참조) | ||
+ | :<math>\int_0^x{\frac{1}{\sqrt{1-x^4}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^4}}}dx = \int_0^{A(x,y)}{\frac{1}{\sqrt{1-x^4}}}dx</math> | ||
+ | 여기서 <math>A(x,y)=\frac{x\sqrt{1-y^4}+y\sqrt{1-x^4}}{1+x^2y^2}</math> | ||
+ | * 오일러의 일반화 | ||
+ | <math>p(x)=1+mx^2+nx^4</math>일 때, | ||
+ | :<math>\int_0^x{\frac{1}{\sqrt{p(x)}}}dx+\int_0^y{\frac{1}{\sqrt{p(x)}}}dx = \int_0^{B(x,y)}{\frac{1}{\sqrt{p(x)}}}dx</math> | ||
+ | 여기서 | ||
+ | :<math>B(x,y)=\frac{x\sqrt{p(y)}+y\sqrt{p(x)}}{1-nx^2y^2}</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==메모== | ||
+ | |||
+ | * 타원적분의 응용으로 [[단진자의 주기와 타원적분]] 항목 참조 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==관련된 항목들== | ||
+ | |||
+ | * [[타원곡선]] | ||
+ | * [[타원함수]] | ||
+ | ** [[바이어슈트라스 타원함수 ℘]] | ||
+ | * [[자코비 세타함수]] | ||
+ | * [[초기하급수(Hypergeometric series)]] | ||
+ | * [[대수적 함수와 아벨적분]] | ||
+ | * [[오일러 치환|오일러치환]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==사전 형태의 자료== | ||
+ | |||
+ | * http://ko.wikipedia.org/wiki/타원적분 | ||
+ | * http://en.wikipedia.org/wiki/Elliptic_integral | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
+ | ** [http://dlmf.nist.gov/19 Chapter 19 Elliptic Integrals] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==관련논문== | ||
+ | |||
+ | * [http://www.springerlink.com/content/b365w3511067g184/ In Search of the "Birthday" of Elliptic Functions - Bit by bit, the discoverers decided what it was they had discovered.] | ||
+ | ** Rice, Adrian, 48-57, The Mathematical Intelligencer, Volume 30, Number 2, 2008-3 | ||
+ | * Totaro, Burt. 2007. “Euler and Algebraic Geometry.” Bulletin of the American Mathematical Society 44 (4): 541–559. doi:[http://dx.doi.org/10.1090/S0273-0979-07-01178-0 10.1090/S0273-0979-07-01178-0]. | ||
+ | * [http://www.springerlink.com/content/t32h69374h887w33/ The Lemniscate and Fagnano's Contributions to Elliptic Integrals] | ||
+ | ** AYOUB R | ||
+ | * [http://www.math.tulane.edu/%7Evhm/papers_html/EU.pdf A property of Euler's elastic curve] | ||
+ | * [http://www.springerlink.com/content/911pnwauaeggxk13/ The story of Landen, the hyperbola and the ellipse] | ||
+ | ** Elemente der Mathematik, Volume 57, Number 1 / 2002년 2월 | ||
+ | * [http://www.jstor.org/stable/2687483 Three Fermat Trails to Elliptic Curves] | ||
+ | ** Ezra Brown, <cite style="line-height: 2em;">The College Mathematics Journal</cite>, Vol. 31, No. 3 (May, 2000), pp. 162-172 | ||
+ | * [http://www.jstor.org/stable/2974515 Elliptic Curves] | ||
+ | ** John Stillwell, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 102, No. 9 (Nov., 1995), pp. 831-837 | ||
+ | * [http://www.jstor.org/stable/2321821 Abel's Theorem on the Lemniscate] | ||
+ | ** Michael Rosen, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 88, No. 6 (Jun. - Jul., 1981), pp. 387-395 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==관련도서== | ||
+ | |||
+ | * [http://www.amazon.com/Functions-Integrals-Translations-Mathematical-Monographs/dp/0821805878 Elliptic functions and elliptic integrals] | ||
+ | ** Viktor Prasolov, Yuri Solovyev | ||
+ | * [http://www.amazon.com/PI-AGM-Analytic-Computational-Complexity/dp/047131515X Pi and the AGM] | ||
+ | ** Jonathan M. Borwein, Peter B. Borwein | ||
+ | |||
+ | |||
+ | ==블로그== | ||
+ | |||
+ | * [http://bomber0.byus.net/index.php/2009/08/19/1428 삼각치환에서 타원적분으로] 피타고라스의 창, 2009-8-19 | ||
+ | [[분류:리만곡면론]] | ||
+ | [[분류:특수함수]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q1126603 Q1126603] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'elliptic'}, {'LOWER': 'integral'}] | ||
+ | |||
+ | == 노트 == | ||
+ | |||
+ | ===말뭉치=== | ||
+ | # For instance, while the arc length of a circle is given as a simple function of the parameter, computing the arc length of an ellipse requires an elliptic integral.<ref name="ref_156bfa3e">[https://mathworld.wolfram.com/EllipticIntegral.html Elliptic Integral -- from Wolfram MathWorld]</ref> | ||
+ | # An elliptic integral is written when the parameter is used, when the elliptic modulus is used, and when the modular angle is used.<ref name="ref_156bfa3e" /> | ||
+ | # Additional insight into the theory of the elliptic integral may be gained through the study of the Schwarz–Christoffel mapping.<ref name="ref_f2288109">[https://en.wikipedia.org/wiki/Elliptic_integral Elliptic integral]</ref> | ||
+ | # These arguments are expressed in a variety of different but equivalent ways (they give the same elliptic integral).<ref name="ref_f2288109" /> | ||
+ | # This is referred to as the incomplete Legendre elliptic integral.<ref name="ref_8a03a90c">[http://www.mhtlab.uwaterloo.ca/courses/me755/web_chap3.pdf Elliptic integrals, elliptic functions and]</ref> | ||
+ | # The integral is also called Legendres form for the elliptic integral of the first kind.<ref name="ref_728c7c82">[https://www.pearson.com/content/dam/one-dot-com/one-dot-com/us/en/files/Jay-Villanuevaictcm3013.pdf Elliptic integrals and some applications]</ref> | ||
+ | # = 0 (1+2)122 , 0 < < 1, 0, also called Legendres form for the elliptic integral of the third kind.<ref name="ref_728c7c82" /> | ||
+ | # The upper limit x in the Jacobi form of the elliptic integral of the first kind is related to the upper limit in the Legendre form by = sin .<ref name="ref_728c7c82" /> | ||
+ | # returns values of the complete elliptic integral E(K).<ref name="ref_13b5d81f">[https://people.sc.fsu.edu/~jburkardt/f77_src/elliptic_integral/elliptic_integral.html Elliptic Integrals]</ref> | ||
+ | # returns values of the complete elliptic integral E(M).<ref name="ref_13b5d81f" /> | ||
+ | # returns values of the complete elliptic integral F(K).<ref name="ref_13b5d81f" /> | ||
+ | # returns values of the complete elliptic integral F(M).<ref name="ref_13b5d81f" /> | ||
+ | # Any elliptic integral can be expressed as a sum of elementary functions and linear combinations of canonical elliptic integrals of the first, second and third kinds.<ref name="ref_053ce1aa">[https://encyclopediaofmath.org/wiki/Elliptic_integral Encyclopedia of Mathematics]</ref> | ||
+ | # TOMS577, a C++ library which evaluates Carlson's elliptic integral functions RC, RD, RF and RJ.<ref name="ref_adbb6bc9">[https://people.math.sc.edu/Burkardt/cpp_src/elliptic_integral/elliptic_integral.html Elliptic Integrals]</ref> | ||
+ | # The point here is simply show one of the uses of the elliptic integral of the first kind.<ref name="ref_957e1726">[https://www.codeproject.com/Articles/566614/Elliptic-integrals Elliptic integrals]</ref> | ||
+ | # However, the complete elliptic integral is taken from 0 to 90 degrees, but since that is exactly 1/4 over the total arc length due to symmetry.<ref name="ref_957e1726" /> | ||
+ | # Complete elliptic integral of the second kind Math.<ref name="ref_a0c3c644">[https://github.com/duetosymmetry/elliptic-integrals-js duetosymmetry/elliptic-integrals-js: Complete elliptic integrals in javascript]</ref> | ||
+ | # Complete elliptic integral of the first kind.<ref name="ref_2f73b86e">[https://solitaryroad.com/c684.html Elliptic integrals of the first, second and third kinds. Jacobian elliptic functions. Identities, formulas, series expansions, derivatives, integrals.]</ref> | ||
+ | # Complete elliptic integral of the third kind.<ref name="ref_2f73b86e" /> | ||
+ | # Cubic and sesquiplicate modular transformations of an elliptic integral from the equal-mass Dalitz plot are proven and used extensively.<ref name="ref_4885c2a7">[https://arxiv.org/pdf/0801.4813 Elliptic integral evaluation of a Bessel moment by contour integration of a lattice Green function]</ref> | ||
+ | # dy 1 + a cos x + b cos y (1) Keywords: Double elliptic integral, hypergeometric function 1 .<ref name="ref_ce2c00f8">[https://arxiv.org/pdf/0709.1289 A two-parameter generalization of the complete elliptic integral of the second kind M. L. Glasser]</ref> | ||
+ | # v i X r a SHARP DOUBLE INEQUALITY FOR COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND QI BAO r2 sin2 t)1/2dt is known as the Abstract.<ref name="ref_740b93c5">[https://arxiv.org/pdf/2104.11630 SHARP DOUBLE INEQUALITY FOR COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND]</ref> | ||
+ | # Abstract We prove a simple relation for a special case of Carlsons elliptic integral RD.<ref name="ref_a6ffe9ff">[https://arxiv.org/pdf/2001.02203 Short note on a relation between the inverse of the cosine and Carlson’s elliptic integral RD]</ref> | ||
+ | # Let K be the complete elliptic integral of the rst kind.<ref name="ref_11a7f590">[https://arxiv.org/pdf/2103.04072 On a Conjecture Concerning the Approximates of Complete Elliptic Integral of the First Kind by Inverse Hyperbolic Tangent]</ref> |
2022년 9월 16일 (금) 02:19 기준 최신판
개요
- 먼저 타원적분론 입문 참조
- \(R(x,y)\)는 \(x,y\)의 유리함수이고, \(y^2\)은 \(x\)의 3차 또는 4차식\[\int R(x,\sqrt{ax^3+bx^2+cx+d}) \,dx\] 또는\[\int R(x,\sqrt{ax^4+bx^3+cx^2+dx+e}) \,dx\]
타원 둘레의 길이
- 역사적으로 타원 둘레의 길이를 구하는 적분에서 그 이름이 기원함.
- 타원 \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)의 둘레의 길이는 \(4aE(k)\) 로 주어짐.\[k=\sqrt{1-\frac{b^2}{a^2}}\]\[E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\]
정의
- 일반적으로 다음과 같은 형태로 주어지는 적분을 타원적분이라 부름
\[\int R(x,y)\,dx\] 여기서 \(R(x,y)\)는 \(x,y\)의 유리함수, \(y^2\)= 중근을 갖지 않는 \(x\)의 3차식 또는 4차식.
- 예를 들자면,
\[\int \frac{dx}{\sqrt{1-x^4}}\] \[\int \frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\]
일종타원적분과 이종타원적분
- 제1종타원적분 K (complete elliptic integral of the first kind)\[K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}=\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\]\[K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\]
- 제2종타원적분 E (complete elliptic integral of the second kind)\[E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\]\[E(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},-\frac{1}{2};1;k^2)\]
- \(\,_2F_1(a,b;c;z)\)는 초기하급수(Hypergeometric series)
르장드르의 항등식
- 일종타원적분과 이종타원적분 사이에는 다음과 같은 관계가 성립
\[E(k)K'(k)+E'(k)K(k)-K(k)K'(k)=\frac{\pi}{2}\]
또는 \(\theta+\phi=\frac{\pi}{2}\) 에 대하여 \[E(\sin\theta)K(\sin\phi)+E(\sin\phi)K(\sin\theta)-K(\sin\theta)K(\sin\phi)=\frac{\pi}{2}\]
- 특별히 다음과 같은 관계가 성립함
\[2K(\frac{1}{\sqrt{2}})E(\frac{1}{\sqrt{2}})-K(\frac{1}{\sqrt{2}})^2=\frac{\pi}{2}\]
덧셈공식
- 파그나노의 공식 (렘니스케이트 곡선과 Lemniscatomy 항목 참조)
\[\int_0^x{\frac{1}{\sqrt{1-x^4}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^4}}}dx = \int_0^{A(x,y)}{\frac{1}{\sqrt{1-x^4}}}dx\] 여기서 \(A(x,y)=\frac{x\sqrt{1-y^4}+y\sqrt{1-x^4}}{1+x^2y^2}\)
- 오일러의 일반화
\(p(x)=1+mx^2+nx^4\)일 때, \[\int_0^x{\frac{1}{\sqrt{p(x)}}}dx+\int_0^y{\frac{1}{\sqrt{p(x)}}}dx = \int_0^{B(x,y)}{\frac{1}{\sqrt{p(x)}}}dx\] 여기서 \[B(x,y)=\frac{x\sqrt{p(y)}+y\sqrt{p(x)}}{1-nx^2y^2}\]
메모
- 타원적분의 응용으로 단진자의 주기와 타원적분 항목 참조
관련된 항목들
사전 형태의 자료
- http://ko.wikipedia.org/wiki/타원적분
- http://en.wikipedia.org/wiki/Elliptic_integral
- NIST Digital Library of Mathematical Functions
관련논문
- In Search of the "Birthday" of Elliptic Functions - Bit by bit, the discoverers decided what it was they had discovered.
- Rice, Adrian, 48-57, The Mathematical Intelligencer, Volume 30, Number 2, 2008-3
- Totaro, Burt. 2007. “Euler and Algebraic Geometry.” Bulletin of the American Mathematical Society 44 (4): 541–559. doi:10.1090/S0273-0979-07-01178-0.
- The Lemniscate and Fagnano's Contributions to Elliptic Integrals
- AYOUB R
- A property of Euler's elastic curve
- The story of Landen, the hyperbola and the ellipse
- Elemente der Mathematik, Volume 57, Number 1 / 2002년 2월
- Three Fermat Trails to Elliptic Curves
- Ezra Brown, The College Mathematics Journal, Vol. 31, No. 3 (May, 2000), pp. 162-172
- Elliptic Curves
- John Stillwell, The American Mathematical Monthly, Vol. 102, No. 9 (Nov., 1995), pp. 831-837
- Abel's Theorem on the Lemniscate
- Michael Rosen, The American Mathematical Monthly, Vol. 88, No. 6 (Jun. - Jul., 1981), pp. 387-395
관련도서
- Elliptic functions and elliptic integrals
- Viktor Prasolov, Yuri Solovyev
- Pi and the AGM
- Jonathan M. Borwein, Peter B. Borwein
블로그
- 삼각치환에서 타원적분으로 피타고라스의 창, 2009-8-19
메타데이터
위키데이터
- ID : Q1126603
Spacy 패턴 목록
- [{'LOWER': 'elliptic'}, {'LOWER': 'integral'}]
노트
말뭉치
- For instance, while the arc length of a circle is given as a simple function of the parameter, computing the arc length of an ellipse requires an elliptic integral.[1]
- An elliptic integral is written when the parameter is used, when the elliptic modulus is used, and when the modular angle is used.[1]
- Additional insight into the theory of the elliptic integral may be gained through the study of the Schwarz–Christoffel mapping.[2]
- These arguments are expressed in a variety of different but equivalent ways (they give the same elliptic integral).[2]
- This is referred to as the incomplete Legendre elliptic integral.[3]
- The integral is also called Legendres form for the elliptic integral of the first kind.[4]
- = 0 (1+2)122 , 0 < < 1, 0, also called Legendres form for the elliptic integral of the third kind.[4]
- The upper limit x in the Jacobi form of the elliptic integral of the first kind is related to the upper limit in the Legendre form by = sin .[4]
- returns values of the complete elliptic integral E(K).[5]
- returns values of the complete elliptic integral E(M).[5]
- returns values of the complete elliptic integral F(K).[5]
- returns values of the complete elliptic integral F(M).[5]
- Any elliptic integral can be expressed as a sum of elementary functions and linear combinations of canonical elliptic integrals of the first, second and third kinds.[6]
- TOMS577, a C++ library which evaluates Carlson's elliptic integral functions RC, RD, RF and RJ.[7]
- The point here is simply show one of the uses of the elliptic integral of the first kind.[8]
- However, the complete elliptic integral is taken from 0 to 90 degrees, but since that is exactly 1/4 over the total arc length due to symmetry.[8]
- Complete elliptic integral of the second kind Math.[9]
- Complete elliptic integral of the first kind.[10]
- Complete elliptic integral of the third kind.[10]
- Cubic and sesquiplicate modular transformations of an elliptic integral from the equal-mass Dalitz plot are proven and used extensively.[11]
- dy 1 + a cos x + b cos y (1) Keywords: Double elliptic integral, hypergeometric function 1 .[12]
- v i X r a SHARP DOUBLE INEQUALITY FOR COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND QI BAO r2 sin2 t)1/2dt is known as the Abstract.[13]
- Abstract We prove a simple relation for a special case of Carlsons elliptic integral RD.[14]
- Let K be the complete elliptic integral of the rst kind.[15]
- ↑ 1.0 1.1 Elliptic Integral -- from Wolfram MathWorld
- ↑ 2.0 2.1 Elliptic integral
- ↑ Elliptic integrals, elliptic functions and
- ↑ 4.0 4.1 4.2 Elliptic integrals and some applications
- ↑ 5.0 5.1 5.2 5.3 Elliptic Integrals
- ↑ Encyclopedia of Mathematics
- ↑ Elliptic Integrals
- ↑ 8.0 8.1 Elliptic integrals
- ↑ duetosymmetry/elliptic-integrals-js: Complete elliptic integrals in javascript
- ↑ 10.0 10.1 Elliptic integrals of the first, second and third kinds. Jacobian elliptic functions. Identities, formulas, series expansions, derivatives, integrals.
- ↑ Elliptic integral evaluation of a Bessel moment by contour integration of a lattice Green function
- ↑ A two-parameter generalization of the complete elliptic integral of the second kind M. L. Glasser
- ↑ SHARP DOUBLE INEQUALITY FOR COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND
- ↑ Short note on a relation between the inverse of the cosine and Carlson’s elliptic integral RD
- ↑ On a Conjecture Concerning the Approximates of Complete Elliptic Integral of the First Kind by Inverse Hyperbolic Tangent