"다변수미적분학"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 2개는 보이지 않습니다)
5번째 줄: 5번째 줄:
 
* '미적분학의 기본정리'의 다변수 확장 버전인 '스토크스 정리' 를 공부함.
 
* '미적분학의 기본정리'의 다변수 확장 버전인 '스토크스 정리' 를 공부함.
  
 
+
  
 
+
  
 
==선수 과목 또는 알고 있으면 좋은 것들==
 
==선수 과목 또는 알고 있으면 좋은 것들==
17번째 줄: 17번째 줄:
 
* [[벡터의 외적(cross product)]]
 
* [[벡터의 외적(cross product)]]
  
 
+
 
+
  
 
+
  
 
==다루는 대상==
 
==다루는 대상==
27번째 줄: 27번째 줄:
 
* 벡터장
 
* 벡터장
  
 
+
  
 
==중요한 개념 및 정리==
 
==중요한 개념 및 정리==
41번째 줄: 41번째 줄:
 
* [[라그랑지 승수 법칙(Lagrange multiplier)]]
 
* [[라그랑지 승수 법칙(Lagrange multiplier)]]
 
*  헤세판정법
 
*  헤세판정법
** 모스 보조정리 (Morse lemma)   
+
** 모스 보조정리 (Morse lemma)  
 
** 판별식 판별법(Determinant test)
 
** 판별식 판별법(Determinant test)
 
*  다중적분
 
*  다중적분
56번째 줄: 56번째 줄:
 
** 미분형식으로 표현되는 스토크스 정리의 특별한 경우로 생각할 수 있음.
 
** 미분형식으로 표현되는 스토크스 정리의 특별한 경우로 생각할 수 있음.
  
 
+
  
 
+
  
 
+
  
 
==유명한 정리 혹은 재미있는 문제==
 
==유명한 정리 혹은 재미있는 문제==
  
* grad, div, curl 과 같은 미분연산자의 좌표불변성
+
* grad, div, curl 과 같은 미분연산자의 좌표불변성
 
* [[n차원 공의 부피|n차원 구의 부피]]
 
* [[n차원 공의 부피|n차원 구의 부피]]
 
*  3차원의 외적을 고차원으로 확장할 수 있을까?[[1,2,4,8 과 1,3,7|1,2,4,8 과 1,3,7]]
 
*  3차원의 외적을 고차원으로 확장할 수 있을까?[[1,2,4,8 과 1,3,7|1,2,4,8 과 1,3,7]]
 
** [[1,2,4,8 과 1,3,7|1,2,4,8 혹은 1,3,7]]
 
** [[1,2,4,8 과 1,3,7|1,2,4,8 혹은 1,3,7]]
  
 
+
  
==다른 과목과의 관련성==
+
==다른 과목과의 관련성==
  
 
*  전자기학
 
*  전자기학
80번째 줄: 80번째 줄:
 
** 헤세판정법과 실베스터의 intertia 정리
 
** 헤세판정법과 실베스터의 intertia 정리
  
 
+
  
 
+
  
 
==관련된 대학원 과목 또는 더 공부하면 좋은 것들==
 
==관련된 대학원 과목 또는 더 공부하면 좋은 것들==
90번째 줄: 90번째 줄:
 
* 미분다양체론
 
* 미분다양체론
  
 
+
  
 
==표준적인 교과서==
 
==표준적인 교과서==
  
 
+
  
 
+
  
 
==추천도서 및 보조교재==
 
==추천도서 및 보조교재==
107번째 줄: 107번째 줄:
 
**  Michael J. Crowe
 
**  Michael J. Crowe
  
 
+
  
==사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/vector_calculus
 
* http://en.wikipedia.org/wiki/vector_calculus
  
 
+
  
 
==관련논문과 에세이==
 
==관련논문과 에세이==
140번째 줄: 140번째 줄:
 
[[분류:미적분학]]
 
[[분류:미적분학]]
 
[[분류:교과목]]
 
[[분류:교과목]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q200802 Q200802]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'vector'}, {'LEMMA': 'calculus'}]

2021년 2월 17일 (수) 05:01 기준 최신판

개요

  • 다변수 함수의 미분과 적분을 공부함.
  • 라그랑지 승수 법칙과 헤세판정법을 통해, 함수의 최대값과 최소값을 구하는 기술을 배움.
  • '미적분학의 기본정리'의 다변수 확장 버전인 '스토크스 정리' 를 공부함.



선수 과목 또는 알고 있으면 좋은 것들




다루는 대상

  • 곡선, 곡면, n차원 공간
  • 벡터장


중요한 개념 및 정리

  • 편미분
  • 다변수 함수의 테일러 전개
  • 미분연산자
    • grad
    • div
    • curl
  • 내적과 외적
  • 다변수 함수의 임계점
  • 라그랑지 승수 법칙(Lagrange multiplier)
  • 헤세판정법
    • 모스 보조정리 (Morse lemma)
    • 판별식 판별법(Determinant test)
  • 다중적분
    • 푸비니의 정리 (Fubini's theorem)
  • 좌표변환
    • 자코비안과 행렬식
    • 극좌표계
    • 구면좌표계
    • 원통좌표계
    • 치환적분법
  • 그린 정리
  • 발산 정리
  • 스토크스 정리
    • 미분형식으로 표현되는 스토크스 정리의 특별한 경우로 생각할 수 있음.




유명한 정리 혹은 재미있는 문제


다른 과목과의 관련성



관련된 대학원 과목 또는 더 공부하면 좋은 것들

  • 미분형식 (differential forms)
    • 스토크스 정리를 고차원으로 일반화하기 위해서는, 미분다양체와 미분형식의 언어가 필요함
  • 미분다양체론


표준적인 교과서

추천도서 및 보조교재


사전 형태의 자료


관련논문과 에세이

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'vector'}, {'LEMMA': 'calculus'}]