그린 정리

수학노트
둘러보기로 가기 검색하러 가기

개요

  • 스토크스 정리의 특수한 경우\[\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\, {d}A=\oint_{\partial D} (P\, {d}x + Q\, {d}y)\]


폐곡선에 둘러싸인 영역의 넓이

  • 폐곡선 C에 둘러싸인 영역의 넓이는 다음 공식으로 주어진다 \[A=\oint_{C} x dy = \oint_{C} - y dx =\frac{1}{2}\oint_{C} x dy-y dx\]


증명

면적은 \(A= \iint_{D} 1 \, {d}A\)으로 주어지므로, 그린 정리를 이용하여 다음 각각의 경우 \(P,Q\) 가 \(\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)=1\)을 만족함을 보이면 된다.

  • \(P=0,Q=x\)
  • \(P=-y,Q=0\)
  • \(P=-y/2,Q=x/2\)


꼭지점이 주어진 다각형의 넓이

  • 평면위의 점 \(P_i=(x_i,y_i), i=0,1,\cdots, n-1\)을 꼭지점으로 갖는 n-각형 \(\overline{P_0P_1\cdots P_{n-1}}\)의 넓이 \(A\)는 다음으로 주어진다 \[A=\frac{1}{2}\sum_{i=0}^{n-1}x_iy_{i+1}-y_ix_{i+1}\] 이 때, \((x_{n},y_{n})=(x_{0},y_{0}).\) 이다


역사



메모


매스매티카 파일 및 계산 리소스


관련된 항목들


사전 형태의 자료



관련논문

노트

말뭉치

  1. Hence, Green's theorem, as we have written it, is valid only for curves oriented counterclockwise (as pictured above).[1]
  2. Green's theorem and other fundamental theorems Green's theorem is one of the four fundamental theorems of vector calculus all of which are closely linked.[1]
  3. Are you ready to use Green's theorem?[1]
  4. Make sure you understand when you are allowed to use Green's theorem, check out some other ways of writing Green's theorem, then investigate some examples.[1]
  5. Green's theorem gives a relationship between the line integral of a two-dimensional vector field over a closed path in the plane and the double integral over the region it encloses.[2]
  6. Note that Green's Theorem applies to regions in the xy-plane.[3]
  7. We could evaluate the line integral of F.dr along C directly, but it is almost always easier to use Green's theorem.[3]
  8. The term Green's theorem is applied to a collection of results that are really just restatements of the fundamental theorem of calculus in higher dimensional problems.[4]
  9. The various forms of Green's theorem includes the Divergence Theorem which is called by physicists Gauss's Law, or the Gauss-Ostrogradski law.[4]
  10. We can also write Green's Theorem in vector form.[5]
  11. Subsection 12.7.2 Green's Theorem So far in this section, we have restricted ourselves to relatively nice closed curves when thinking about circulation.[6]
  12. The restriction that the curve in Green's Theorem prohibits curves such as the one below, which crosses itself.[6]
  13. } \end{equation*} In Activity 12.7.2, we showed that Green's Theorem holds when the region \(R\) is a rectangle with sides parallel to the coordinate axes.[6]
  14. The discussion that introduced the previous subsection may have you convinced that Green's Theorem holds in its full form.[6]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'green'}, {'LOWER': "'s"}, {'LOWER': 'theorem'}]