"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
* [http://en.wikipedia.org/wiki/Timeline_of_mathematics 페르마의 마지막 정리] 참조
 
* [http://en.wikipedia.org/wiki/Timeline_of_mathematics 페르마의 마지막 정리] 참조
 
* http://blog.daum.net/kangnaru333/15859461
 
* http://blog.daum.net/kangnaru333/15859461
*  
 
  
 
 
 
 
82번째 줄: 81번째 줄:
 
* [http://en.wikipedia.org/wiki/1817 1817] - [http://en.wikipedia.org/wiki/Bernard_Bolzano Bernard Bolzano] presents the [http://en.wikipedia.org/wiki/Intermediate_value_theorem intermediate value theorem]---a [http://en.wikipedia.org/wiki/Continuous_function continuous function] which is negative at one point and positive at another point must be zero for at least one point in between,
 
* [http://en.wikipedia.org/wiki/1817 1817] - [http://en.wikipedia.org/wiki/Bernard_Bolzano Bernard Bolzano] presents the [http://en.wikipedia.org/wiki/Intermediate_value_theorem intermediate value theorem]---a [http://en.wikipedia.org/wiki/Continuous_function continuous function] which is negative at one point and positive at another point must be zero for at least one point in between,
 
* 1822 -코쉬가 [[복소함수론]]에서 사각형의 둘레를 따라 적분한데 대한 코쉬정리를 발표함
 
* 1822 -코쉬가 [[복소함수론]]에서 사각형의 둘레를 따라 적분한데 대한 코쉬정리를 발표함
* [http://en.wikipedia.org/wiki/1824 1824] - 아벨이 일반적인 5차 이상의
+
* [http://en.wikipedia.org/wiki/1824 1824] - 아벨이 일반적인 5차 이상의 방정식의 근의 공식이 없음을 증명함. [[5차방정식의 근의 공식과 아벨의 증명]] 참조
 
* [http://en.wikipedia.org/wiki/1825 1825] - Augustin-Louis Cauchy presents the [http://en.wikipedia.org/wiki/Cauchy_integral_theorem Cauchy integral theorem] for general integration paths -- he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis],
 
* [http://en.wikipedia.org/wiki/1825 1825] - Augustin-Louis Cauchy presents the [http://en.wikipedia.org/wiki/Cauchy_integral_theorem Cauchy integral theorem] for general integration paths -- he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis],
 
* [http://en.wikipedia.org/wiki/1825 1825] - 디리클레와 르장드르가 <em style="">n</em> = 5인 경우에 대해 [[페르마의 마지막 정리]]를 증명
 
* [http://en.wikipedia.org/wiki/1825 1825] - 디리클레와 르장드르가 <em style="">n</em> = 5인 경우에 대해 [[페르마의 마지막 정리]]를 증명
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] discovers [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem],
+
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] 가 스토크스 정리를 발견
* [http://en.wikipedia.org/wiki/1828 1828] - George Green proves [http://en.wikipedia.org/wiki/Green%27s_theorem Green's theorem],
+
* [http://en.wikipedia.org/wiki/1828 1828] - 조지 그린(George Green)이 [[그린 정리(통합됨)|그린 정리]] 를 증명함
 
* 1829 - 볼리아이, 가우스, 로바체프스키가 [[#|쌍곡기하학]]을 발견
 
* 1829 - 볼리아이, 가우스, 로바체프스키가 [[#|쌍곡기하학]]을 발견
 
* [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green,
 
* [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green,
95번째 줄: 94번째 줄:
 
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem],
 
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem],
 
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem,
 
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem,
* [http://en.wikipedia.org/wiki/1843 1843] - 해밀턴이 [[해밀턴의 사원수(quarternions)|해밀턴의 사원수]] 를 발견함
+
* [http://en.wikipedia.org/wiki/1843 1843] - 해밀턴이 [[해밀턴의 사원수(quarternions)|사원수]] 를 발견함
 
* 1844 - 리우빌이 초월수인 리우빌 수를 구성함
 
* 1844 - 리우빌이 초월수인 리우빌 수를 구성함
 
* [http://en.wikipedia.org/wiki/1847 1847] - [http://en.wikipedia.org/wiki/George_Boole George Boole] formalizes [http://en.wikipedia.org/wiki/Symbolic_logic symbolic logic] in <em style="">The Mathematical Analysis of Logic</em>, defining what is now called [http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29 Boolean algebra],
 
* [http://en.wikipedia.org/wiki/1847 1847] - [http://en.wikipedia.org/wiki/George_Boole George Boole] formalizes [http://en.wikipedia.org/wiki/Symbolic_logic symbolic logic] in <em style="">The Mathematical Analysis of Logic</em>, defining what is now called [http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29 Boolean algebra],
106번째 줄: 105번째 줄:
 
* [http://en.wikipedia.org/wiki/1859 1859] - 리만이 [[리만가설]]을 발표
 
* [http://en.wikipedia.org/wiki/1859 1859] - 리만이 [[리만가설]]을 발표
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Charles_Hermite Charles Hermite] proves that [http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 e] is transcendental, [[#|자연상수 e는 초월수이다]]
+
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Charles_Hermite Charles Hermite]  [[#|자연상수 e는 초월수]]
 +
* 임으
 
* [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스([http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius])가 [[정규특이점(regular singular points)]]을 가지는 선형미분방정식의 급수해 찾는 방법을 소개함
 
* [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스([http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius])가 [[정규특이점(regular singular points)]]을 가지는 선형미분방정식의 급수해 찾는 방법을 소개함
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)

2010년 8월 14일 (토) 19:40 판

 

 

17세기

 

 


18세기


 

 

19세기


 

 

20세기

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상