"5차방정식과 정이십면체"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
5번째 줄: 5번째 줄:
 
 
 
 
  
 
+
But '''it often happens also that the same special problem finds application in the most unlike branches of mathematical knowledge'''. So, for example, the problem of the shortest line plays a chief and historically important part in the foundations of geometry, in the theory of curved lines and surfaces, in mechanics and in the calculus of variations. And '''how convincingly has F. Klein, in his work on the icosahedron, pictured the significance which attaches to the problem of the regular polyhedra in elementary geometry, in group theory, in the theory of equations and in that of linear differential equations.'''
 
 
 
 
  
But '''it often happens also that the same special problem finds application in the most unlike branches of mathematical knowledge'''. So, for example, the problem of the shortest line plays a chief and historically important part in the foundations of geometry, in the theory of curved lines and surfaces, in mechanics and in the calculus of variations. And '''how convincingly has F. Klein, in his work on the icosahedron, pictured the significance which attaches to the problem of the regular polyhedra in elementary geometry, in group theory, in the theory of equations and in that of linear differential equations.'''
+
[/pages/2026224/attachments/912874 img363.gif]
  
 
+
[/pages/2026224/attachments/912872 img324.gif]
  
 
 
 
 
30번째 줄: 28번째 줄:
  
 
* [[5차방정식과 근의 공식|일반적인 5차 이상의 방정식의 대수적 해가 존재하지 않음에 대한 아벨의 증명]]
 
* [[5차방정식과 근의 공식|일반적인 5차 이상의 방정식의 대수적 해가 존재하지 않음에 대한 아벨의 증명]]
 +
* [[뫼비우스 변환군과 기하학]]
 +
* [[구면기하학]]
 +
 +
 
  
 
 
 
 

2009년 8월 18일 (화) 02:19 판

간단한 소개

20세기 수학의 궤도를 제시한 힐버트의 역사적인 1900년 국제수학자대회 연설의 초반부에는 다음과 같은 언급이 있음. (Mathematical Problems, Lecture delivered before the International Congress of Mathematicians at Paris in 1900 By Professor David Hilbert)

 

But it often happens also that the same special problem finds application in the most unlike branches of mathematical knowledge. So, for example, the problem of the shortest line plays a chief and historically important part in the foundations of geometry, in the theory of curved lines and surfaces, in mechanics and in the calculus of variations. And how convincingly has F. Klein, in his work on the icosahedron, pictured the significance which attaches to the problem of the regular polyhedra in elementary geometry, in group theory, in the theory of equations and in that of linear differential equations.

[/pages/2026224/attachments/912874 img363.gif]

[/pages/2026224/attachments/912872 img324.gif]

 

관련된 학부 과목과 미리 알고 있으면 좋은 것들

 

 

관련된 대학원 과목

 

 

관련된 다른 주제들

 

 

표준적인 도서 및 추천도서
위키링크

 

 

참고할만한 자료