"클리포드 대수와 스피너"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
+ | * [[해밀턴의 사원수(quarternions)]]의 일반화 | ||
+ | * 직교군의 스핀 표현 (spin representation) 을 구성하기 위한 도구 | ||
+ | |||
− | + | ||
− | + | ==클리포드 대수== | |
− | |||
− | |||
− | |||
− | |||
* 이차형식이 주어진 벡터공간 <math>(V,Q)</math> | * 이차형식이 주어진 벡터공간 <math>(V,Q)</math> | ||
* Q : non-degenerate quadratic form 으로부터 symmetric bilinear form <math>\langle x,y \rangle</math> 을 얻는다 | * Q : non-degenerate quadratic form 으로부터 symmetric bilinear form <math>\langle x,y \rangle</math> 을 얻는다 | ||
− | * 클리포드 대수: V의 원소들로 생성되는 | + | * 클리포드 대수: V의 원소들로 생성되는 결합대수(associative algebra)로 다음 관계를 만족시킨다<br> |
** <math>v^2=Q(v)</math> | ** <math>v^2=Q(v)</math> | ||
** <math>vw+wv=2\langle w,v\rangle</math> | ** <math>vw+wv=2\langle w,v\rangle</math> | ||
17번째 줄: | 16번째 줄: | ||
− | + | ||
− | + | ||
− | + | ==스피너== | |
* 클리포드 대수의 벡터공간 <math>W</math> 에서의 표현(representation)을 생각하자 | * 클리포드 대수의 벡터공간 <math>W</math> 에서의 표현(representation)을 생각하자 | ||
* W의 원소를 스피너라 부른다 | * W의 원소를 스피너라 부른다 | ||
− | + | ||
− | + | ||
− | + | ==파울리 스피너== | |
* 실수체 위에 정의된 8차원 클리포드 대수 | * 실수체 위에 정의된 8차원 클리포드 대수 | ||
37번째 줄: | 36번째 줄: | ||
* SO(3)의 사영표현을 얻을 수 있다 | * SO(3)의 사영표현을 얻을 수 있다 | ||
− | + | ||
− | + | ||
− | + | ==디랙 스피너== | |
* 16차원 실대수 | * 16차원 실대수 | ||
− | * 4차원 민코프스키 공간 <math>E_{3,1}</math>의 클리포드 | + | * 4차원 민코프스키 공간 <math>E_{3,1}</math>의 클리포드 대수 <math>C(E_{3,1})</math> 와 동형 |
* <math>\gamma_{\mu}^2=\epsilon_{\mu}</math>, <math>\gamma_{\mu}\gamma_{\nu}+\gamma_{\nu}\gamma_{\mu}=0</math>, <math>\epsilon_{0}=1, \epsilon_{i}=-1</math> | * <math>\gamma_{\mu}^2=\epsilon_{\mu}</math>, <math>\gamma_{\mu}\gamma_{\nu}+\gamma_{\nu}\gamma_{\mu}=0</math>, <math>\epsilon_{0}=1, \epsilon_{i}=-1</math> | ||
* 4차원 표현이 존재한다 | * 4차원 표현이 존재한다 | ||
51번째 줄: | 50번째 줄: | ||
* [[디랙 행렬]] | * [[디랙 행렬]] | ||
− | + | ||
− | + | ||
− | + | ==역사== | |
− | + | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | + | ||
+ | ==메모== | ||
* Math Overflow http://mathoverflow.net/search?q= | * Math Overflow http://mathoverflow.net/search?q= | ||
− | + | ||
− | + | ||
− | + | ==관련된 항목들== | |
* [[디랙 방정식]] | * [[디랙 방정식]] | ||
* [[스핀과 파울리의 배타원리]] | * [[스핀과 파울리의 배타원리]] | ||
+ | * [[하이젠베르크 군과 대수]] | ||
− | + | ||
− | + | ||
− | + | ==수학용어번역== | |
* 단어사전<br> | * 단어사전<br> | ||
** http://translate.google.com/#en|ko| | ** http://translate.google.com/#en|ko| | ||
** http://ko.wiktionary.org/wiki/ | ** http://ko.wiktionary.org/wiki/ | ||
− | * | + | * 발음사전 http://www.forvo.com/search/ |
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | * [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | ||
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
− | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 | + | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] |
− | + | ||
− | + | ||
− | + | ||
− | + | ==사전 형태의 자료== | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
113번째 줄: | 110번째 줄: | ||
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | * [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | ||
− | + | ||
− | |||
− | |||
− | + | ||
+ | ==리뷰논문, 에세이, 강의노트== | ||
+ | *Peter Woit의 강의 노트 | ||
+ | **[http://www.math.columbia.edu/~woit/notes17.pdf Clifford Algebras] | ||
+ | **[http://www.math.columbia.edu/~woit/notes18.pdf Spin Groups] | ||
+ | **[http://www.math.columbia.edu/~woit/notes19.pdf The Spinor Representation] | ||
* Lachièze-Rey, Marc. 2009. “Spin and Clifford Algebras, an Introduction”. <em>Advances in Applied Clifford Algebras</em> 19 (3-4): 687-720. doi:10.1007/s00006-009-0187-y. | * Lachièze-Rey, Marc. 2009. “Spin and Clifford Algebras, an Introduction”. <em>Advances in Applied Clifford Algebras</em> 19 (3-4): 687-720. doi:10.1007/s00006-009-0187-y. | ||
* [http://www.math.ucla.edu/%7Evsv/papers/ch5.pdf http://www.math.ucla.edu/~vsv/papers/ch5.pdf] | * [http://www.math.ucla.edu/%7Evsv/papers/ch5.pdf http://www.math.ucla.edu/~vsv/papers/ch5.pdf] | ||
− | |||
* Frescura, F. A. M. 1981. “Geometric interpretation of the Pauli spinor”. <em>American Journal of Physics</em> 49: 152. doi:[http://dx.doi.org/10.1119/1.12548 10.1119/1.12548.] | * Frescura, F. A. M. 1981. “Geometric interpretation of the Pauli spinor”. <em>American Journal of Physics</em> 49: 152. doi:[http://dx.doi.org/10.1119/1.12548 10.1119/1.12548.] | ||
* Vivarelli, Maria Dina. 1984. “Development of spinor descriptions of rotational mechanics from Euler’s rigid body displacement theorem”. <em>Celestial Mechanics</em> 32 (3월): 193-207. doi:[http://dx.doi.org/10.1007/BF01236599 10.1007/BF01236599]. | * Vivarelli, Maria Dina. 1984. “Development of spinor descriptions of rotational mechanics from Euler’s rigid body displacement theorem”. <em>Celestial Mechanics</em> 32 (3월): 193-207. doi:[http://dx.doi.org/10.1007/BF01236599 10.1007/BF01236599]. | ||
* Coquereaux, Robert. 2005. “Clifford algebras, spinors and fundamental interactions : Twenty Years After”. <em>arXiv:math-ph/0509040</em> (9월 19). http://arxiv.org/abs/math-ph/0509040. | * Coquereaux, Robert. 2005. “Clifford algebras, spinors and fundamental interactions : Twenty Years After”. <em>arXiv:math-ph/0509040</em> (9월 19). http://arxiv.org/abs/math-ph/0509040. | ||
+ | |||
− | + | ==관련논문== | |
− | |||
− | |||
− | |||
− | |||
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
136번째 줄: | 132번째 줄: | ||
* http://dx.doi.org/ | * http://dx.doi.org/ | ||
− | + | ||
− | + | ||
− | + | ==관련도서== | |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 9월 4일 (화) 00:48 판
개요
- 해밀턴의 사원수(quarternions)의 일반화
- 직교군의 스핀 표현 (spin representation) 을 구성하기 위한 도구
클리포드 대수
- 이차형식이 주어진 벡터공간 \((V,Q)\)
- Q : non-degenerate quadratic form 으로부터 symmetric bilinear form \(\langle x,y \rangle\) 을 얻는다
- 클리포드 대수: V의 원소들로 생성되는 결합대수(associative algebra)로 다음 관계를 만족시킨다
- \(v^2=Q(v)\)
- \(vw+wv=2\langle w,v\rangle\)
- 외대수(exterior algebra,그라스만 대수)의 양자화로 이해하기도 한다
스피너
- 클리포드 대수의 벡터공간 \(W\) 에서의 표현(representation)을 생각하자
- W의 원소를 스피너라 부른다
파울리 스피너
- 실수체 위에 정의된 8차원 클리포드 대수
- 파울리 행렬 로부터 구성할 수 있다
- 3차원 유클리드 공간 \(E_{3}\)의 클리포드 대수 \(C(E_{3})\)와 동형이다
- SO(3)의 사영표현을 얻을 수 있다
디랙 스피너
- 16차원 실대수
- 4차원 민코프스키 공간 \(E_{3,1}\)의 클리포드 대수 \(C(E_{3,1})\) 와 동형
- \(\gamma_{\mu}^2=\epsilon_{\mu}\), \(\gamma_{\mu}\gamma_{\nu}+\gamma_{\nu}\gamma_{\mu}=0\), \(\epsilon_{0}=1, \epsilon_{i}=-1\)
- 4차원 표현이 존재한다
- 로렌츠 군의 사영표현을 얻을 수 있다
- 로렌츠 군의 universal covering \(H=SL(2,\mathbb{C})\) 의 표현
- 디랙 행렬
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Exterior_algebra
- http://en.wikipedia.org/wiki/Clifford_algebra
- http://en.wikipedia.org/wiki/Spinors_in_three_dimensions
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
- Peter Woit의 강의 노트
- Lachièze-Rey, Marc. 2009. “Spin and Clifford Algebras, an Introduction”. Advances in Applied Clifford Algebras 19 (3-4): 687-720. doi:10.1007/s00006-009-0187-y.
- http://www.math.ucla.edu/~vsv/papers/ch5.pdf
- Frescura, F. A. M. 1981. “Geometric interpretation of the Pauli spinor”. American Journal of Physics 49: 152. doi:10.1119/1.12548.
- Vivarelli, Maria Dina. 1984. “Development of spinor descriptions of rotational mechanics from Euler’s rigid body displacement theorem”. Celestial Mechanics 32 (3월): 193-207. doi:10.1007/BF01236599.
- Coquereaux, Robert. 2005. “Clifford algebras, spinors and fundamental interactions : Twenty Years After”. arXiv:math-ph/0509040 (9월 19). http://arxiv.org/abs/math-ph/0509040.
관련논문