"타원곡선"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
65번째 줄: 65번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">Hasse-Weil 정리</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Hasse-Weil 정리</h5>
  
* <math>|\#E(\mathbb{F}_p)-p-1|\leq 2\sqrt{p}</math><br>
+
* <math>|\#E(\mathbb{F}_p)-p-1|\leq 2\sqrt{p}</math>
  
 
 
 
 
73번째 줄: 73번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">L-함수</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">L-함수</h5>
  
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">타니야마-시무라 추측(정리)</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">타니야마-시무라 추측(정리)</h5>
  
 
* [[search?q=%ED%83%80%EB%8B%88%EC%95%BC%EB%A7%88-%EC%8B%9C%EB%AC%B4%EB%9D%BC%20%EC%B6%94%EC%B8%A1%28%EC%A0%95%EB%A6%AC%29&parent id=2061314|타니야마-시무라 추측(정리)]]
 
* [[search?q=%ED%83%80%EB%8B%88%EC%95%BC%EB%A7%88-%EC%8B%9C%EB%AC%B4%EB%9D%BC%20%EC%B6%94%EC%B8%A1%28%EC%A0%95%EB%A6%AC%29&parent id=2061314|타니야마-시무라 추측(정리)]]
85번째 줄: 85번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">Birch and Swinnerton-Dyer 추측</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Birch and Swinnerton-Dyer 추측</h5>
  
 
+
* [[search?q=Birch%20and%20Swinnerton-Dyer%20%EC%B6%94%EC%B8%A1&parent id=2061314|Birch and Swinnerton-Dyer 추측]]<br>
  
 
 
 
 
182번째 줄: 182번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
  
* [[#]]
+
* [http://www.ams.org/bull/2002-39-04/S0273-0979-02-00952-7/home.html Ranks of elliptic curves]<br>
 +
** Karl Rubin; Alice Silverberg, Bull. Amer. Math. Soc. 39 (2002), 455-474. 
 
* [http://dx.doi.org/10.1007%2FBF01458081 Heegner points and derivatives of L-series. II]<br>
 
* [http://dx.doi.org/10.1007%2FBF01458081 Heegner points and derivatives of L-series. II]<br>
 
**  Gross, B.; Kohnen, W.; Zagier, D. (1987),  Mathematische Annalen 278 (1–4): 497–562<br>
 
**  Gross, B.; Kohnen, W.; Zagier, D. (1987),  Mathematische Annalen 278 (1–4): 497–562<br>

2010년 2월 27일 (토) 16:27 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

 

격자와 타원곡선

\(y^2=4x^3-g_2(\tau)x-g_3\)

\(g_2(\tau) = 60G_4=60\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{4}}\)

\(g_3(\tau) = 140G_6=140\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{6}}\)

 

 

군의 구조
  • chord-tangent method
  • 유리수해에 대한 Mordell theorem
    • 유리수체 위에 정의된 타원의 유리수해는 유한생성아벨군의 구조를 가짐
    • \(\mathbb{Z}^r \oplus \mathbb{T}\)
       

 

덧셈공식
  • \(y^2=x^3+ax^2+bx+c\)위의 점 \(P=(x,y)\)에 대하여,
    \(2P\)의 \(x\)좌표는\(\frac{x^4-2bx^2-8cx-4ac+b^2}{4y^2}\) 로 주어진다

 

 

 

rank와 torsion
  • the only possible torsion groups for elliptic curves over Q are the cyclic groups of order 1,2,3,4,5,6,7,8,9,10,12 [sic -- 11 is not possible] and
    \(\frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{n\mathbb Z}\) for n=1,2,3,4
  • 예) \(E_n : y^2=x^3-n^2x\)의 torsion은 \(\{(\infty,\infty), (0,0),(n,0),(-n,0)\}\)임

 

 

 

Hasse-Weil 정리
  • \(|\#E(\mathbb{F}_p)-p-1|\leq 2\sqrt{p}\)

 

 

L-함수

 

타니야마-시무라 추측(정리)

 

 

Birch and Swinnerton-Dyer 추측

 

 

 

재미있는 사실

 

 

역사

 

 

 

 

 

관련된 다른 주제들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

expository articles

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그