"드 무아브르의 정리, 복소수와 정다각형"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
 
 
 
* [[드 무아브르의 정리, 복소수와 정다각형]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
65번째 줄: 55번째 줄:
 
* [[복소수]]
 
* [[복소수]]
 
* [[추상대수학]]
 
* [[추상대수학]]
* [[추상대수학의 토픽들]]
 
 
* [[복소함수론]]
 
* [[복소함수론]]
  

2013년 3월 3일 (일) 03:14 판

개요

(정리) 드 무아브르

\((\cos \theta + i \sin \theta)^n=\cos n\theta + i \sin n\theta\)

여기서 \(\theta\) 는 임의의 실수, \(n\) 은 임의의 정수

 

 

증명

  • 수학적 귀납법

 

 

오일러의 정리를 통한 증명

  • 오일러의 공식
  • 복소지수함수 \(e^{i\theta}=\cos \theta+ i\sin \theta\)  의 성질에서 자연스럽게 유도

\((\cos \theta+ i\sin \theta)^n=(e^{i\theta})^n=e^{in\theta}= \cos n\theta+ i\sin n\theta\)

 

 

 

 

정다각형과의 관계

  • \(z^n=1\) 를 만족시키는 복소수 방정식을 풀면, n개의 해는 복소평면에서 정n각형의 꼭지점이 된다.
    방정식을 풀기 위해, \(z=\cos \theta + i \sin \theta\) 로 두고 드 무아브르 정리를 적용하자.\[(\cos \theta + i \sin \theta)^n=\cos n\theta + i \sin n\theta=1\]\[\theta=\frac{2k\pi}{n}, k=0,1,\cdots,n-1\]
     
  • \(z^3=1\) 의 해는, \(1,\frac{-1+\sqrt{-3}}{2}, \frac{-1-\sqrt{-3}}{2}\) 세 개가 있다. 이를 복소평면에 점으로 나타내면, 다음과 같이 정삼각형의 꼭지점을 이룬다.
    3002568-img602.gif

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 항목들

 

 

사전형태의 자료

 

 

관련기사