"자코비 다항식"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) (section '관련논문' added) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
==개요== | ==개요== | ||
− | * | + | * <math>n\in \mathbb{Z}_{\geq 0}, \alpha, \beta</math>를 매개변수로 갖는 직교다항식 <math>P_{n}^{(\alpha\,\beta)}(x)</math> |
* 다양한 직교다항식을 특수한 경우로 가짐 | * 다양한 직교다항식을 특수한 경우로 가짐 | ||
12번째 줄: | 12번째 줄: | ||
===특수한 경우=== | ===특수한 경우=== | ||
* [[게겐바워 다항식(ultraspherical polynomials)]] | * [[게겐바워 다항식(ultraspherical polynomials)]] | ||
− | + | :<math> | |
C_n^{(\lambda )}(x)=\frac{(2 \lambda)_{n}}{\left(\lambda +\frac{1}{2}\right)_n}P_n^{\left(\lambda -\frac{1}{2},\lambda -\frac{1}{2}\right)}(x) | C_n^{(\lambda )}(x)=\frac{(2 \lambda)_{n}}{\left(\lambda +\frac{1}{2}\right)_n}P_n^{\left(\lambda -\frac{1}{2},\lambda -\frac{1}{2}\right)}(x) | ||
− | + | </math> | |
* [[체비셰프 다항식]] | * [[체비셰프 다항식]] | ||
− | + | :<math> | |
T_n(x)=\frac{2^{2 n} (n!)^2}{(2 n)!}P_n^{\left(-\frac{1}{2},-\frac{1}{2}\right)}(x) | T_n(x)=\frac{2^{2 n} (n!)^2}{(2 n)!}P_n^{\left(-\frac{1}{2},-\frac{1}{2}\right)}(x) | ||
− | + | </math> | |
− | + | :<math> | |
U_n(x)=\frac{2^{2 n+1} ((n+1)!)^2 }{(2 n+2)!}P_n^{\left(\frac{1}{2},\frac{1}{2}\right)}(x) | U_n(x)=\frac{2^{2 n+1} ((n+1)!)^2 }{(2 n+2)!}P_n^{\left(\frac{1}{2},\frac{1}{2}\right)}(x) | ||
− | + | </math> | |
* [[르장드르 다항식]] | * [[르장드르 다항식]] | ||
− | + | :<math> | |
P_n(x)=P_n^{(0,0)}(x) | P_n(x)=P_n^{(0,0)}(x) | ||
− | + | </math> | |
* [[라게르 다항식]] | * [[라게르 다항식]] | ||
− | + | :<math> | |
L_n^{\alpha }(x)=\lim_{\beta \to \infty } \, P_n^{(\alpha ,\beta )}\left(1-\frac{2 x}{\beta }\right) | L_n^{\alpha }(x)=\lim_{\beta \to \infty } \, P_n^{(\alpha ,\beta )}\left(1-\frac{2 x}{\beta }\right) | ||
− | + | </math> | |
* [[에르미트 다항식(Hermite polynomials)]] | * [[에르미트 다항식(Hermite polynomials)]] | ||
− | + | :<math> | |
H_n(x)=\lim_{\alpha \to \infty } \, \frac{\left(2^n n!\right) }{\alpha ^{n/2}}P_n^{(\alpha ,\alpha )}\left(\frac{x}{\sqrt{\alpha }}\right) | H_n(x)=\lim_{\alpha \to \infty } \, \frac{\left(2^n n!\right) }{\alpha ^{n/2}}P_n^{(\alpha ,\alpha )}\left(\frac{x}{\sqrt{\alpha }}\right) | ||
− | + | </math> | |
==성질== | ==성질== | ||
* 로드리게스 공식 | * 로드리게스 공식 | ||
− | + | :<math> | |
(1-x)^{\alpha } (1+x)^{\beta } P_n^{(\alpha ,\beta )}(x)=\frac{(-1)^n}{2^n n!}\frac{d^n}{dx^n}\left[\left((1-x)^{\alpha +n} (1+x)^{\beta +n}\right)\right] \label{RF} | (1-x)^{\alpha } (1+x)^{\beta } P_n^{(\alpha ,\beta )}(x)=\frac{(-1)^n}{2^n n!}\frac{d^n}{dx^n}\left[\left((1-x)^{\alpha +n} (1+x)^{\beta +n}\right)\right] \label{RF} | ||
− | + | </math> | |
47번째 줄: | 47번째 줄: | ||
− | * 직교성, | + | * 직교성, <math>m,n\in \mathbb{Z}_{\geq 0}</math>에 대하여, |
:<math>\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}</math> | :<math>\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}</math> | ||
63번째 줄: | 63번째 줄: | ||
;보조정리 | ;보조정리 | ||
다음이 성립한다 | 다음이 성립한다 | ||
− | + | :<math> | |
\int_{-1}^1(1-x)^{\alpha} (1+x)^{\beta}\,dx=2^{\alpha+\beta+1}\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)} | \int_{-1}^1(1-x)^{\alpha} (1+x)^{\beta}\,dx=2^{\alpha+\beta+1}\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)} | ||
− | + | </math> | |
;(증명) | ;(증명) | ||
− | + | <math>t=(1-x)/2</math>로 치환하면, | |
− | + | :<math> | |
\begin{aligned} | \begin{aligned} | ||
\int_{-1}^1(1-x)^{\alpha} (1+x)^{\beta}\,dx=&\int_0^1 2^{\alpha+\beta+1}t^{\alpha}(1-t)^{\beta}\, dt \\ | \int_{-1}^1(1-x)^{\alpha} (1+x)^{\beta}\,dx=&\int_0^1 2^{\alpha+\beta+1}t^{\alpha}(1-t)^{\beta}\, dt \\ | ||
74번째 줄: | 74번째 줄: | ||
=&2^{\alpha+\beta+1}\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)} | =&2^{\alpha+\beta+1}\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)} | ||
\end{aligned} | \end{aligned} | ||
− | + | </math> | |
− | 여기서 | + | 여기서 <math>B(x,y)</math>는 [[오일러 베타적분(베타함수)]] |
■ | ■ | ||
;(정리) | ;(정리) | ||
− | * | + | * <math>m,n\in \mathbb{Z}_{\geq 0}</math>에 대하여, |
:<math>\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}</math> | :<math>\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}</math> | ||
;증명 | ;증명 | ||
− | + | <math>P_m^{\alpha,\beta}</math>는 <math>m</math>차 다항식이므로, 적당한 상수 <math>c_{mk}, k=0,1,\cdots, m</math>에 대하여 다음과 같이 쓸 수 있다 | |
− | + | :<math> | |
P_m^{(\alpha,\beta)} (x)=\sum_{k=0}^m c_{mk}x^k,\,c_{mm}=\frac{\Gamma (2 m+\alpha +\beta +1)}{2^{m} m! \Gamma (m+\alpha +\beta +1)}. | P_m^{(\alpha,\beta)} (x)=\sum_{k=0}^m c_{mk}x^k,\,c_{mm}=\frac{\Gamma (2 m+\alpha +\beta +1)}{2^{m} m! \Gamma (m+\alpha +\beta +1)}. | ||
− | + | </math> | |
− | 직교성은 \ref{RF}과 [[부분적분]]을 이용하여 증명할 수 있다. | + | 직교성은 \ref{RF}과 [[부분적분]]을 이용하여 증명할 수 있다. <math>m\leq n</math>이라 가정하자. |
− | + | :<math> | |
\begin{aligned} | \begin{aligned} | ||
\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \, dx=&\sum_{k=0}^m c_{mk}\frac{(-1)^n}{2^nn!}\int_{-1}^1x^k\frac{d^n}{dx^n}\left[(1-x)^{\alpha+n} (1+x)^{\beta+n}\right]\,dx\\ | \int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \, dx=&\sum_{k=0}^m c_{mk}\frac{(-1)^n}{2^nn!}\int_{-1}^1x^k\frac{d^n}{dx^n}\left[(1-x)^{\alpha+n} (1+x)^{\beta+n}\right]\,dx\\ | ||
95번째 줄: | 95번째 줄: | ||
=&\delta_{nm}\frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} | =&\delta_{nm}\frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} | ||
\end{aligned} | \end{aligned} | ||
− | + | </math> | |
■ | ■ | ||
==테이블== | ==테이블== | ||
− | + | :<math> | |
\begin{array}{c|c} | \begin{array}{c|c} | ||
n & P_n^{(\alpha ,\beta )}(x) \\ | n & P_n^{(\alpha ,\beta )}(x) \\ | ||
108번째 줄: | 108번째 줄: | ||
3 & \frac{1}{6} (\alpha +1) (\alpha +2) (\alpha +3)+\frac{1}{48} (z-1)^3 (\alpha +\beta +4) (\alpha +\beta +5) (\alpha +\beta +6)+\frac{1}{8} (\alpha +3) (z-1)^2 (\alpha +\beta +4) (\alpha +\beta +5)+\frac{1}{4} (\alpha +2) (\alpha +3) (z-1) (\alpha +\beta +4) | 3 & \frac{1}{6} (\alpha +1) (\alpha +2) (\alpha +3)+\frac{1}{48} (z-1)^3 (\alpha +\beta +4) (\alpha +\beta +5) (\alpha +\beta +6)+\frac{1}{8} (\alpha +3) (z-1)^2 (\alpha +\beta +4) (\alpha +\beta +5)+\frac{1}{4} (\alpha +2) (\alpha +3) (z-1) (\alpha +\beta +4) | ||
\end{array} | \end{array} | ||
− | + | </math> | |
2020년 11월 16일 (월) 04:06 판
개요
- \(n\in \mathbb{Z}_{\geq 0}, \alpha, \beta\)를 매개변수로 갖는 직교다항식 \(P_{n}^{(\alpha\,\beta)}(x)\)
- 다양한 직교다항식을 특수한 경우로 가짐
정의
- 초기하급수(Hypergeometric series)를 통해 정의된다\[P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!} \,_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\frac{1-z}{2}\right)\]
- 다항식표현\[P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+n+1)}{n!\Gamma (\alpha+\beta+n+1)} \sum_{m=0}^n {n\choose m} \frac{\Gamma (\alpha + \beta + n + m + 1)}{\Gamma (\alpha + m + 1)} \left(\frac{z-1}{2}\right)^m\]
특수한 경우
\[ C_n^{(\lambda )}(x)=\frac{(2 \lambda)_{n}}{\left(\lambda +\frac{1}{2}\right)_n}P_n^{\left(\lambda -\frac{1}{2},\lambda -\frac{1}{2}\right)}(x) \]
\[ T_n(x)=\frac{2^{2 n} (n!)^2}{(2 n)!}P_n^{\left(-\frac{1}{2},-\frac{1}{2}\right)}(x) \] \[ U_n(x)=\frac{2^{2 n+1} ((n+1)!)^2 }{(2 n+2)!}P_n^{\left(\frac{1}{2},\frac{1}{2}\right)}(x) \]
\[ P_n(x)=P_n^{(0,0)}(x) \]
\[ L_n^{\alpha }(x)=\lim_{\beta \to \infty } \, P_n^{(\alpha ,\beta )}\left(1-\frac{2 x}{\beta }\right) \]
\[ H_n(x)=\lim_{\alpha \to \infty } \, \frac{\left(2^n n!\right) }{\alpha ^{n/2}}P_n^{(\alpha ,\alpha )}\left(\frac{x}{\sqrt{\alpha }}\right) \]
성질
- 로드리게스 공식
\[ (1-x)^{\alpha } (1+x)^{\beta } P_n^{(\alpha ,\beta )}(x)=\frac{(-1)^n}{2^n n!}\frac{d^n}{dx^n}\left[\left((1-x)^{\alpha +n} (1+x)^{\beta +n}\right)\right] \label{RF} \]
- 자코비 다항식은 다음의 미분방정식 만족시킨다
\[(1-x^2)y'' + ( \beta-\alpha - (\alpha + \beta + 2)x )y'+ n(n+\alpha+\beta+1) y = 0\]
- 직교성, \(m,n\in \mathbb{Z}_{\geq 0}\)에 대하여,
\[\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}\]
예
- \(\alpha=1/2,\beta=1/2,m=n=2\)인 경우
\[\int_{-1}^1 (1-x)^{\frac{1}{2}} (1+x)^{\frac{1}{2}} P_2^{(\frac{1}{2},\frac{1}{2})} (x)P_2^{(\frac{1}{2},\frac{1}{2})} (x) \; dx= \frac{4}{6} \frac{\Gamma(3+\frac{1}{2})\Gamma(3+\frac{1}{2})}{\Gamma(4)2!}=\frac{4(\frac{15\sqrt{\pi}}{8})^2}{12\cdot 3!}=\frac{25\pi}{128}\]
직교성의 증명
- weight함수와 구간
\[w(x) = (1-x)^{\alpha} (1+x)^{\beta}, x\in [-1,1]\]
- 보조정리
다음이 성립한다 \[ \int_{-1}^1(1-x)^{\alpha} (1+x)^{\beta}\,dx=2^{\alpha+\beta+1}\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)} \]
- (증명)
\(t=(1-x)/2\)로 치환하면, \[ \begin{aligned} \int_{-1}^1(1-x)^{\alpha} (1+x)^{\beta}\,dx=&\int_0^1 2^{\alpha+\beta+1}t^{\alpha}(1-t)^{\beta}\, dt \\ =&2^{\alpha+\beta+1}B(\alpha+1,\beta+1)\\ =&2^{\alpha+\beta+1}\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)} \end{aligned} \] 여기서 \(B(x,y)\)는 오일러 베타적분(베타함수) ■
- (정리)
- \(m,n\in \mathbb{Z}_{\geq 0}\)에 대하여,
\[\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}\]
- 증명
\(P_m^{\alpha,\beta}\)는 \(m\)차 다항식이므로, 적당한 상수 \(c_{mk}, k=0,1,\cdots, m\)에 대하여 다음과 같이 쓸 수 있다 \[ P_m^{(\alpha,\beta)} (x)=\sum_{k=0}^m c_{mk}x^k,\,c_{mm}=\frac{\Gamma (2 m+\alpha +\beta +1)}{2^{m} m! \Gamma (m+\alpha +\beta +1)}. \] 직교성은 \ref{RF}과 부분적분을 이용하여 증명할 수 있다. \(m\leq n\)이라 가정하자. \[ \begin{aligned} \int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \, dx=&\sum_{k=0}^m c_{mk}\frac{(-1)^n}{2^nn!}\int_{-1}^1x^k\frac{d^n}{dx^n}\left[(1-x)^{\alpha+n} (1+x)^{\beta+n}\right]\,dx\\ =&\sum_{k=0}^m\frac{ c_{mk}}{2^n}\delta_{nk}\int_{-1}^1\left[(1-x)^{\alpha+n} (1+x)^{\beta+n}\right]\,dx\\ =&\delta_{nm}\frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \end{aligned} \] ■
테이블
\[ \begin{array}{c|c} n & P_n^{(\alpha ,\beta )}(x) \\ \hline 0 & 1 \\ 1 & \frac{1}{2} (\alpha -\beta +z (\alpha +\beta +2)) \\ 2 & \frac{1}{2} (\alpha +1) (\alpha +2)+\frac{1}{8} (z-1)^2 (\alpha +\beta +3) (\alpha +\beta +4)+\frac{1}{2} (\alpha +2) (z-1) (\alpha +\beta +3) \\ 3 & \frac{1}{6} (\alpha +1) (\alpha +2) (\alpha +3)+\frac{1}{48} (z-1)^3 (\alpha +\beta +4) (\alpha +\beta +5) (\alpha +\beta +6)+\frac{1}{8} (\alpha +3) (z-1)^2 (\alpha +\beta +4) (\alpha +\beta +5)+\frac{1}{4} (\alpha +2) (\alpha +3) (z-1) (\alpha +\beta +4) \end{array} \]
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
- http://en.wikipedia.org/wiki/Jacobi_polynomials
- NIST Digital Library of Mathematical Functions Chapter 18 Orthogonal Polynomials
리뷰, 에세이, 강의노트
- S. Ole Warnaar, Beta Integrals
관련논문
- Oleg Szehr, Rachid Zarouf, On the asymptotic behavior of jacobi polynomials with varying parameters, arXiv:1605.02509 [math.CA], May 09 2016, http://arxiv.org/abs/1605.02509