"드 무아브르의 정리, 복소수와 정다각형"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
7번째 줄: 7번째 줄:
 
여기서 <math>\theta</math> 는 임의의 실수, <math>n</math> 은 임의의 정수
 
여기서 <math>\theta</math> 는 임의의 실수, <math>n</math> 은 임의의 정수
  
 
+
  
 
+
  
 
==증명==
 
==증명==
15번째 줄: 15번째 줄:
 
* 수학적 귀납법
 
* 수학적 귀납법
  
 
+
  
 
+
  
 
==오일러의 정리를 통한 증명==
 
==오일러의 정리를 통한 증명==
  
 
* [[오일러의 공식]]
 
* [[오일러의 공식]]
* 복소지수함수 <math>e^{i\theta}=\cos \theta+ i\sin \theta</math>  의 성질에서 자연스럽게 유도
+
* 복소지수함수 <math>e^{i\theta}=\cos \theta+ i\sin \theta</math> 의 성질에서 자연스럽게 유도
  
 
<math>(\cos \theta+ i\sin \theta)^n=(e^{i\theta})^n=e^{in\theta}= \cos n\theta+ i\sin n\theta</math>
 
<math>(\cos \theta+ i\sin \theta)^n=(e^{i\theta})^n=e^{in\theta}= \cos n\theta+ i\sin n\theta</math>
  
 
+
  
 
+
  
 
+
  
 
+
  
 
==정다각형과의 관계==
 
==정다각형과의 관계==
  
* <math>z^n=1</math> 를 만족시키는 복소수 방정식을 풀면, n개의 해는 복소평면에서 정n각형의 꼭지점이 된다. 방정식을 풀기 위해, <math>z=\cos \theta + i \sin \theta</math> 로 두고 드 무아브르 정리를 적용하자.:<math>(\cos \theta + i \sin \theta)^n=\cos n\theta + i \sin n\theta=1</math>:<math>\theta=\frac{2k\pi}{n}, k=0,1,\cdots,n-1</math>  
+
* <math>z^n=1</math> 를 만족시키는 복소수 방정식을 풀면, n개의 해는 복소평면에서 정n각형의 꼭지점이 된다. 방정식을 풀기 위해, <math>z=\cos \theta + i \sin \theta</math> 로 두고 드 무아브르 정리를 적용하자.:<math>(\cos \theta + i \sin \theta)^n=\cos n\theta + i \sin n\theta=1</math>:<math>\theta=\frac{2k\pi}{n}, k=0,1,\cdots,n-1</math>
 
* <math>z^3=1</math> 의 해는, <math>1,\frac{-1+\sqrt{-3}}{2}, \frac{-1-\sqrt{-3}}{2}</math> 세 개가 있다. 이를 복소평면에 점으로 나타내면, 다음과 같이 정삼각형의 꼭지점을 이룬다.[[파일:3002568-img602.gif]]
 
* <math>z^3=1</math> 의 해는, <math>1,\frac{-1+\sqrt{-3}}{2}, \frac{-1-\sqrt{-3}}{2}</math> 세 개가 있다. 이를 복소평면에 점으로 나타내면, 다음과 같이 정삼각형의 꼭지점을 이룬다.[[파일:3002568-img602.gif]]
  
 
+
  
 
+
  
 
==많이 나오는 질문==
 
==많이 나오는 질문==
48번째 줄: 48번째 줄:
 
** [http://kin.search.naver.com/search.naver?where=kin_qna&query=%EB%93%9C%EB%AC%B4%EC%95%84%EB%B8%8C%EB%A5%B4 http://kin.search.naver.com/search.naver?where=kin_qna&query=드무아브르]
 
** [http://kin.search.naver.com/search.naver?where=kin_qna&query=%EB%93%9C%EB%AC%B4%EC%95%84%EB%B8%8C%EB%A5%B4 http://kin.search.naver.com/search.naver?where=kin_qna&query=드무아브르]
  
 
+
  
 
==관련된 고교수학 또는 대학수학==
 
==관련된 고교수학 또는 대학수학==
57번째 줄: 57번째 줄:
 
* [[복소함수론]]
 
* [[복소함수론]]
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
70번째 줄: 70번째 줄:
 
* [[정규분포와 그 확률밀도함수|정규분포와 중심극한정리]]
 
* [[정규분포와 그 확률밀도함수|정규분포와 중심극한정리]]
  
 
+
  
 
+
  
 
==사전형태의 자료==
 
==사전형태의 자료==
80번째 줄: 80번째 줄:
 
* [http://en.wikipedia.org/wiki/De_Moivre%27s_formula http://en.wikipedia.org/wiki/De_Moivre's_formula]
 
* [http://en.wikipedia.org/wiki/De_Moivre%27s_formula http://en.wikipedia.org/wiki/De_Moivre's_formula]
  
 
+
  
 
+
  
 
==관련기사==
 
==관련기사==
88번째 줄: 88번째 줄:
 
*  네이버 뉴스 검색 (키워드 수정)
 
*  네이버 뉴스 검색 (키워드 수정)
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EB%93%9C%EB%AC%B4%EC%95%84%EB%B8%8C%EB%A5%B4 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=드무아브르]
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EB%93%9C%EB%AC%B4%EC%95%84%EB%B8%8C%EB%A5%B4 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=드무아브르]
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= 
+
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=  
 
[[분류:리만곡면론]]
 
[[분류:리만곡면론]]
 
[[분류:복소함수론]]
 
[[분류:복소함수론]]

2020년 12월 28일 (월) 02:13 판

개요

(정리) 드 무아브르

\((\cos \theta + i \sin \theta)^n=\cos n\theta + i \sin n\theta\)

여기서 \(\theta\) 는 임의의 실수, \(n\) 은 임의의 정수



증명

  • 수학적 귀납법



오일러의 정리를 통한 증명

  • 오일러의 공식
  • 복소지수함수 \(e^{i\theta}=\cos \theta+ i\sin \theta\) 의 성질에서 자연스럽게 유도

\((\cos \theta+ i\sin \theta)^n=(e^{i\theta})^n=e^{in\theta}= \cos n\theta+ i\sin n\theta\)





정다각형과의 관계

  • \(z^n=1\) 를 만족시키는 복소수 방정식을 풀면, n개의 해는 복소평면에서 정n각형의 꼭지점이 된다. 방정식을 풀기 위해, \(z=\cos \theta + i \sin \theta\) 로 두고 드 무아브르 정리를 적용하자.\[(\cos \theta + i \sin \theta)^n=\cos n\theta + i \sin n\theta=1\]\[\theta=\frac{2k\pi}{n}, k=0,1,\cdots,n-1\]
  • \(z^3=1\) 의 해는, \(1,\frac{-1+\sqrt{-3}}{2}, \frac{-1-\sqrt{-3}}{2}\) 세 개가 있다. 이를 복소평면에 점으로 나타내면, 다음과 같이 정삼각형의 꼭지점을 이룬다.3002568-img602.gif



많이 나오는 질문


관련된 고교수학 또는 대학수학



관련된 항목들



사전형태의 자료



관련기사