"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
82번째 줄: 82번째 줄:
 
* [http://en.wikipedia.org/wiki/1817 1817] - [http://en.wikipedia.org/wiki/Bernard_Bolzano Bernard Bolzano] presents the [http://en.wikipedia.org/wiki/Intermediate_value_theorem intermediate value theorem]---a [http://en.wikipedia.org/wiki/Continuous_function continuous function] which is negative at one point and positive at another point must be zero for at least one point in between,
 
* [http://en.wikipedia.org/wiki/1817 1817] - [http://en.wikipedia.org/wiki/Bernard_Bolzano Bernard Bolzano] presents the [http://en.wikipedia.org/wiki/Intermediate_value_theorem intermediate value theorem]---a [http://en.wikipedia.org/wiki/Continuous_function continuous function] which is negative at one point and positive at another point must be zero for at least one point in between,
 
* 1822 -코쉬가 [[복소함수론]]에서 사각형의 둘레를 따라 적분한데 대한 코쉬정리를 발표함
 
* 1822 -코쉬가 [[복소함수론]]에서 사각형의 둘레를 따라 적분한데 대한 코쉬정리를 발표함
* [http://en.wikipedia.org/wiki/1824 1824] - [http://en.wikipedia.org/wiki/Niels_Henrik_Abel Niels Henrik Abel] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that the general [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula involving only arithmetical operations and roots,
+
* [http://en.wikipedia.org/wiki/1824 1824] - 아벨이 일반적인 5차 이상의 방
 
* [http://en.wikipedia.org/wiki/1825 1825] - Augustin-Louis Cauchy presents the [http://en.wikipedia.org/wiki/Cauchy_integral_theorem Cauchy integral theorem] for general integration paths -- he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis],
 
* [http://en.wikipedia.org/wiki/1825 1825] - Augustin-Louis Cauchy presents the [http://en.wikipedia.org/wiki/Cauchy_integral_theorem Cauchy integral theorem] for general integration paths -- he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis],
 
* [http://en.wikipedia.org/wiki/1825 1825] - 디리클레와 르장드르가 <em style="">n</em> = 5인 경우에 대해 [[페르마의 마지막 정리]]를 증명
 
* [http://en.wikipedia.org/wiki/1825 1825] - 디리클레와 르장드르가 <em style="">n</em> = 5인 경우에 대해 [[페르마의 마지막 정리]]를 증명
95번째 줄: 95번째 줄:
 
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem],
 
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem],
 
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem,
 
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem,
* [http://en.wikipedia.org/wiki/1843 1843] - 해밀턴이 [[#]]
+
* [http://en.wikipedia.org/wiki/1843 1843] - 해밀턴이 [[해밀턴의 사원수(quarternions)|해밀턴의 사원수]] 를 발견함
 +
* 1844 - 리우빌이 초월수인 리우빌 수를 구성함
 
* [http://en.wikipedia.org/wiki/1847 1847] - [http://en.wikipedia.org/wiki/George_Boole George Boole] formalizes [http://en.wikipedia.org/wiki/Symbolic_logic symbolic logic] in <em style="">The Mathematical Analysis of Logic</em>, defining what is now called [http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29 Boolean algebra],
 
* [http://en.wikipedia.org/wiki/1847 1847] - [http://en.wikipedia.org/wiki/George_Boole George Boole] formalizes [http://en.wikipedia.org/wiki/Symbolic_logic symbolic logic] in <em style="">The Mathematical Analysis of Logic</em>, defining what is now called [http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29 Boolean algebra],
 
* [http://en.wikipedia.org/wiki/1849 1849] - [http://en.wikipedia.org/wiki/George_Gabriel_Stokes George Gabriel Stokes] shows that [http://en.wikipedia.org/wiki/Soliton solitary waves] can arise from a combination of periodic waves,
 
* [http://en.wikipedia.org/wiki/1849 1849] - [http://en.wikipedia.org/wiki/George_Gabriel_Stokes George Gabriel Stokes] shows that [http://en.wikipedia.org/wiki/Soliton solitary waves] can arise from a combination of periodic waves,

2010년 8월 14일 (토) 19:35 판

 

 

17세기

 

 


18세기


 

 

19세기


 

 

20세기

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상