"5차방정식과 정이십면체"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
70번째 줄: 70번째 줄:
 
* 1824 - 아벨이 일반적인 5차 이상의 방정식의 근의 공식이 없음을 증명함. [[5차방정식의 근의 공식과 아벨의 증명]] 참조
 
* 1824 - 아벨이 일반적인 5차 이상의 방정식의 근의 공식이 없음을 증명함. [[5차방정식의 근의 공식과 아벨의 증명]] 참조
 
* 1858 - 에르미트와 크로네커가 [[타원함수]]를 이용하여 오차방정식의 해를 구함
 
* 1858 - 에르미트와 크로네커가 [[타원함수]]를 이용하여 오차방정식의 해를 구함
* 1877 - 클라인이 '[[5차방정식과 정이십면체|정이십면체와 오차방정식]] 강의' 를 출판함
+
* 1877 - 클라인이 '[[5차방정식과 정이십면체|정이십면체와 오차방정식]] 강의' 를 출판하고, 오차방정식의 해를 초기하급수를 이용하여 표현함
  
 
* 1900 - 힐버트가 국제수학자대회 연설의 초반부에 클라인의 오차방정식과 정이십면체에 대한 연구를 언급
 
* 1900 - 힐버트가 국제수학자대회 연설의 초반부에 클라인의 오차방정식과 정이십면체에 대한 연구를 언급
116번째 줄: 116번째 줄:
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]

2012년 1월 11일 (수) 11:20 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 정이십면체의 대칭은 교대군 \(A_5\)
  • 생성원
    \(S=\begin{pmatrix} \zeta_{10} & 0 \\ 0 & \zeta_{10} \end{pmatrix} \), \(T={\begin{pmatrix} -1 & g \\ g & 1 \end{pmatrix}}\),  \(g=\frac{\sqrt{5}-1}{2}\)

 

 

invariants of the icosahedral group
  • vertex points
    \(V=F_1=z_1z_2(z_1^{10}+11z_1^5z_2^5-z_2^{10})\)
  • face points
    \(F=F_{2}=-(z_1^{20}+z_2^{20})+228(z_1^{15}z_2^{5}-z_1^{5}z_2^{15})-494z_1^{10}z_2^{10}\)
  • edge points
    \(E=F_3=(z_1^{30}+z_2^{30})+522(z_1^{25}z_2^{5}-z_1^{5}z_2^{25})-10005(z_1^{20}z_2^{10}+z_1^{10}z_2^{20})\)

 

 

syzygy relation
  • \(1728F_1^5-F_2^3-F_3^2=0\) 또는 \(1728V^5-E^2-F^3=0\)

 

 

Tschirnhaus transformation

 

 

정이십면체 방정식과 초기하급수 해
  • 정이십면체 방정식(icosahedral equation)
    \(w=\frac{F_1^{5}}{F_3^{2}}=\frac{z^{5}(z^{10}+11z^5-1)^{5}}{((z^{30}+1)+522(z^{25}-z^{5})-10005(z^{20}+z^{10}))^{2}}\)
  • 이 방정식의 해는 초기하급수를 사용하여 표현할 수 있다
    \(z=\frac{\, _2F_1\left(-\frac{1}{60},\frac{29}{60};\frac{4}{5};1728 w\right)}{w^{1/5} \, _2F_1\left(\frac{11}{60},\frac{41}{60};\frac{6}{5};1728 w\right)}\)

 

 

슈바르츠 삼각형 함수
  • 초기하 미분방정식(Hypergeometric differential equations)
    \(z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0\)
  • 슈바르츠 삼각형 함수 (s-함수)
  • \(s(z)=\frac{z^{1-c}\,_2F_1(a',b';c';z)}{\,_2F_1(a,b;c;z)}=\frac{z^{1-c}\,_2F_1(a-c+1,b-c+1;2-c;z)}{\,_2F_1(a,b;c;z)}\)
  • \(\alpha=1-c,\beta=b-a,\gamma=c-a-b\) 로 두면, 상반평면을 \(\alpha\pi,\beta\pi,\gamma\pi\) 를 세 각으로 갖는 삼각형인 경우가 된다
  • \(\alpha=1/5, \beta=1/2, \gamma=1/3\) 로 두면, \(a=-1/60,b=29/60,c=4/5\) 를 얻는다
  • \(a=-1/60,b=29/60,c=4/5\) 를 이용하면,
    \(\frac{Z^{1/5}\,_2F_1(11/60,41/60;6/5;Z)}{\,_2F_1(-1/60,29/60;4/5;Z)}\)

 

 

역사
  • 1900 - 힐버트가 국제수학자대회 연설의 초반부에 클라인의 오차방정식과 정이십면체에 대한 연구를 언급
  • Mathematical Problems
    • Lecture delivered before the International Congress of Mathematicians at Paris in 1900 By Professor David Hilbert

But it often happens also that the same special problem finds application in the most unlike branches of mathematical knowledge. So, for example, the problem of the shortest line plays a chief and historically important part in the foundations of geometry, in the theory of curved lines and surfaces, in mechanics and in the calculus of variations. And how convincingly has F. Klein, in his work on the icosahedron, pictured the significance which attaches to the problem of the regular polyhedra in elementary geometry, in group theory, in the theory of equations and in that of linear differential equations.  

[/pages/2026224/attachments/2671447 icos1.jpg][/pages/2026224/attachments/2671449 icos2.jpg]

 

 

메모

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

 

 

사전형태의 자료

 

 

관련도서

 

 

관련논문

 

 

관련링크와 웹페이지

 

 

블로그