"ADE의 수학"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
52번째 줄: 52번째 줄:
 
* [http://www.google.com/url?sa=t&source=web&cd=1&ved=0CBsQFjAA&url=http%3A%2F%2Fmath.ucr.edu%2Fhome%2Fbaez%2Fhazewinkel_et_al.pdf&ei=kLRtTLHABYX0tgOa1IiTCw&usg=AFQjCNGkaQYcDIKOcDcuE0CTLcg-beS5-g&sig2=5v5TDImhd94YoZ6UjS4LPg The ubiquity of Coxeter Dynkin diagrams]<br>
 
* [http://www.google.com/url?sa=t&source=web&cd=1&ved=0CBsQFjAA&url=http%3A%2F%2Fmath.ucr.edu%2Fhome%2Fbaez%2Fhazewinkel_et_al.pdf&ei=kLRtTLHABYX0tgOa1IiTCw&usg=AFQjCNGkaQYcDIKOcDcuE0CTLcg-beS5-g&sig2=5v5TDImhd94YoZ6UjS4LPg The ubiquity of Coxeter Dynkin diagrams]<br>
 
** Hazewinkel, M.; Hesseling, W.; Siersma, D.; Veldkamp, F., 1977-01-01
 
** Hazewinkel, M.; Hesseling, W.; Siersma, D.; Veldkamp, F., 1977-01-01
 +
* McKay, J. (1980). "Graphs singularities and finite groups". Proc. of 1979 Santa Cruz group theory conference. AMS Symposia in Pure Mathematics. 37. pp. 183–186.
 +
* McKay, J. (1981). "Cartan matrices, finite groups of quaternions, and Kleinian singularities". Proc. AMS 81: 153–154. doi:10.1090/S0002-9939-1981-0589160-8.

2012년 9월 18일 (화) 21:59 판

개요

  • ADE는 원래 semisimple 리대수의 분류에서 사용되었음.
  • 하지만 ADE 분류는 수학의 많은 분야에서 모습을 드러냄.
    • 리군, 리대수, 루트 시스템, 딘킨 다이어그램, reflection 군, 정다면체, 곡면의 특이점 분류, quiver의 표현론 등
  • 정다면체의 분류
    • A - 피라미드
    • D - 쌍피라미드(dipyramid)
    • E6 - 정사면체, E7 - 정육면체, 정팔면체, E8 - 정십이면체,정이십면체



메모



하위주제들



관련된 항목들



관련논문