"디리클레 L-함수의 special values"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
9번째 줄: | 9번째 줄: | ||
*$n$이 1이상의 정수라 하자. | *$n$이 1이상의 정수라 하자. | ||
* <math>\chi\neq 1</math>인 primitive 준동형사상 <math>\chi \colon(\mathbb{Z}/f\mathbb{Z})^\times \to \mathbb C^{*}</math>에 대하여 <math>L(1-n,\chi)</math>의 값은 다음과 같이 주어진다 | * <math>\chi\neq 1</math>인 primitive 준동형사상 <math>\chi \colon(\mathbb{Z}/f\mathbb{Z})^\times \to \mathbb C^{*}</math>에 대하여 <math>L(1-n,\chi)</math>의 값은 다음과 같이 주어진다 | ||
− | :<math>L(1-n,\chi)=-\frac{f^{n-1}}{n}\sum_{(a,f)=1}\chi(a)B_n(\frac{a}{f})</math> | + | :<math>L(1-n,\chi)=-\frac{f^{n-1}}{n}\sum_{(a,f)=1}\chi(a)B_n(\frac{a}{f})=-\frac{B(n,\chi)}{n}</math> |
− | |||
여기서 <math>B_n(x)</math> 는 [[베르누이 다항식]] | 여기서 <math>B_n(x)</math> 는 [[베르누이 다항식]] | ||
− | :<math>B_0(x)=1,\,B_1(x)=x-1/2,\,B_2(x)=x^2-x+1/6\cdots</math> | + | :<math>B_0(x)=1,\,B_1(x)=x-1/2,\,B_2(x)=x^2-x+1/6\cdots,</math> |
+ | $B(n,\chi)$는 일반화된 [[베르누이 수]] | ||
+ | $$ | ||
+ | \sum_{n=0}^{\infty}B(n,\chi)\frac{t^n}{n!}=\sum_{a=1}^{f-1}\frac{\chi(a)t e^{at}}{e^{mt}-1} | ||
+ | $$ | ||
* [[정수에서의 리만제타함수의 값]]은 다음과 같이 주어진다 | * [[정수에서의 리만제타함수의 값]]은 다음과 같이 주어진다 | ||
:<math>\zeta(1-n)=-\frac{B_{n}}{n}, n \ge 1</math> | :<math>\zeta(1-n)=-\frac{B_{n}}{n}, n \ge 1</math> | ||
− | |||
− | |||
− | |||
==$L(1,\chi)$의 값== | ==$L(1,\chi)$의 값== |
2015년 7월 3일 (금) 00:02 판
개요
- \(s=1\) 에서의 값이 중요한 이유
- \(\chi\neq 1\) 인 경우에 대해서, 디리클레는 \(L(1,\chi)\neq 0 \) 임을 보여 등차수열의 소수분포에 관한 디리클레 정리를 증명하였다
- 이차수체 \(K\)의 경우 \(L_{d_K}(1)\) 의 값은 이차 수체에 대한 디리클레 유수 (class number) 공식 과 밀접하게 관련되어 있음
$L(1-n,\chi)$의 값
- $n$이 1이상의 정수라 하자.
- \(\chi\neq 1\)인 primitive 준동형사상 \(\chi \colon(\mathbb{Z}/f\mathbb{Z})^\times \to \mathbb C^{*}\)에 대하여 \(L(1-n,\chi)\)의 값은 다음과 같이 주어진다
\[L(1-n,\chi)=-\frac{f^{n-1}}{n}\sum_{(a,f)=1}\chi(a)B_n(\frac{a}{f})=-\frac{B(n,\chi)}{n}\] 여기서 \(B_n(x)\) 는 베르누이 다항식 \[B_0(x)=1,\,B_1(x)=x-1/2,\,B_2(x)=x^2-x+1/6\cdots,\] $B(n,\chi)$는 일반화된 베르누이 수 $$ \sum_{n=0}^{\infty}B(n,\chi)\frac{t^n}{n!}=\sum_{a=1}^{f-1}\frac{\chi(a)t e^{at}}{e^{mt}-1} $$
- 정수에서의 리만제타함수의 값은 다음과 같이 주어진다
\[\zeta(1-n)=-\frac{B_{n}}{n}, n \ge 1\]
$L(1,\chi)$의 값
- \(\chi\neq 1\)인 primitive 준동형사상 \(\chi \colon(\mathbb{Z}/f\mathbb{Z})^\times \to \mathbb C^{\times}\)에 대하여 \(L(1,\chi)\)의 값은 다음과 같이 주어짐
\[L(1,\chi)=-\frac{\tau(\chi)}{f}\sum_{(a,f)=1}\bar\chi(a)\log(1-e^{-2\pi i a/f})\]
- 여기서 \(\tau(\chi)\)에 대해서는 가우스 합 항목 참조
\[\tau_a(\chi)=\sum_{(j,f)=1}\chi(j)e^{2\pi i aj/f}\] \[\tau(\chi)=\tau_1(\chi)\]
- 좀더 구체적으로 다음과 같이 쓸 수 있음
\[ L(1,\chi) = \begin{cases} \frac{i \pi\tau(\chi)}{f^2}\sum_{(a,f)=1}\bar\chi(a) a\label{L1odd}\,\mbox{ if }\chi(-1)=-1 \\ -\frac{\tau(\chi)}{f}\sum_{(a,f)=1}\bar\chi(a)\log(\sin \frac{a\pi}{f})\,\mbox{ if } \chi(-1)=1. \end{cases} \]
이차수체의 \(L(1,\chi_{d_K})\)
- 이차수체 \(K\), \(d_K\)는 판별식 \(d_K\)를 나누지 않는 소수 \(p\)에 대하여 준동형사상 \(\chi_{d_K} \colon(\mathbb{Z}/d_K\mathbb{Z})^\times \to \mathbb C^{\times}\) 은 다음 조건에 의해 유일하게 결정됨
\[\chi_{d_K}(p)=\left(\frac{d_K}{p}\right)\]
\(q \geq 2\) 는 소수라 가정하자.
\(K=\mathbb{Q}(\sqrt{-q})\), \(q \geq 3\) , \(q \equiv 3 \pmod{4}\) 인 경우
\(d_K=-q\)
\(\chi(a)=\left(\frac{a}{q}\right)\)
\(\chi(-1)=-1\), \(\tau(\chi)=i\sqrt{q}\)
\(L(1,\chi)= \frac{- \pi\sqrt{q}}{q^2}\sum_{a=1}^{q-1}\left(\frac{a}{q}\right) a\)
\(K=\mathbb{Q}(\sqrt{q})\) , \(q \geq 5\), \(q \equiv 1 \pmod{4}\) 인 경우
\(d_K=q\)
\(\chi(a)=\left(\frac{a}{q}\right)\)
\(\chi(-1)=1\), \(\tau(\chi)=\sqrt{q}\)
\(L(1,\chi)=-\frac{\sqrt{q}}{q}\sum_{a=1}^{q-1}\left(\frac{a}{q}\right)\log(\sin \frac{a\pi}{q})\)
\(K=\mathbb{Q}(\sqrt{-q})\) , \(q \geq 1\) , \(q \equiv 1 \pmod{4}\) 인 경우
\(d_K=-4q\)
\(\chi(-1)=-1\), \(\tau(\chi)=2i\sqrt{q}\)
소수 \(p \neq 2 , q\)에 대하여
\(p \equiv 1 \pmod{4}\)이면
\(\chi(p)=\left(\frac{-4q}{p}\right)=\left(\frac{-q}{p}\right)=\left(\frac{p}{q}\right)\)
\(p \equiv 3 \pmod{4}\)이면
\(\chi(p)=\left(\frac{-4q}{p}\right)=\left(\frac{-q}{p}\right)=-\left(\frac{p}{q}\right)\)
따라서
\(\chi(p)=\left(\frac{-1}{p}\right)\left(\frac{p}{q}\right)\)
일반적인
\(n\in \mathbb{Z}\), \((n,4q)=1\) 에 대해서는
\(\chi(n)=(-1)^{\frac{n-1}{2}}\left(\frac{n}{q}\right)\)
\(L(1,\chi)= -\frac{ \pi\sqrt{q}}{8q^2}\sum_{(a,4q)=1}(-1)^{\frac{a-1}{2}}\left(\frac{a}{q}\right) a\)
\(K=\mathbb{Q}(\sqrt{q})\) , \(q \geq 3\), \(q \equiv 3 \pmod{4}\) 인 경우
\(d_K=4q\)
\(\chi(-1)=1\), \(\tau(\chi)=2\sqrt{q}\)
소수 \(p \neq 2 , q\)에 대하여
\(p \equiv 1 \pmod{4}\)이면
\(\chi(p)=\left(\frac{4q}{p}\right)=\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)\)
\(p \equiv 3 \pmod{4}\)이면
\(\chi(p)=\left(\frac{4q}{p}\right)=\left(\frac{q}{p}\right)=-\left(\frac{p}{q}\right)\)
따라서
\(\chi(p)=\left(\frac{-1}{p}\right)\left(\frac{p}{q}\right)\)
일반적인
\(n\in \mathbb{Z}\), \((n,4q)=1\) 에 대해서는
\(\chi(n)=(-1)^{\frac{n-1}{2}}\left(\frac{n}{q}\right)\)
\(L(1,\chi)=-\frac{1}{2\sqrt{q}}\sum_{(a,4q)=1}(-1)^{\frac{a-1}{2}}\left(\frac{a}{q}\right)\log(\sin \frac{a\pi}{4q})\)
이차잉여에의 응용
7이상의 소수 \(p \equiv 3 \pmod{4}\) 와 \(\chi(a)=\left(\frac{a}{p}\right)\) 를 정의하자.
\(K=\mathbb{Q}(\sqrt{-p})\) 라 두면, \(d_K=-p\)이며 \(\chi(a)=\left(\frac{a}{p}\right)\) 는 \(d_K\)를 나누지 않는 소수 \(p\)에 대하여 \(\chi(p)=\left(\frac{d_K}{p}\right)\) 를 만족시킨다.
\(p \equiv 3 \pmod{4}\) 이므로 \(\chi(-1)=-1\)이고, \ref{L1odd}로부터 \[L(1,\chi)=\frac{i\pi \tau(\chi)}{p}\sum_{a=1}^{p-1}\bar\chi(a)\frac{a}{p}=\frac{i\pi \tau(\chi)}{p}\sum_{a=1}^{p-1}\chi(a)\frac{a}{p}\] 를 얻고, 다른 한편으로 이차 수체에 대한 디리클레 유수 (class number) 공식으로부터 \[L(1,\chi)=\frac{\pi h}{\sqrt p}\]
을 얻는다.
가우스 합은 \(\tau (\chi)=i\sqrt p\) 이므로 위의 두 값을 비교하면, \[h=\frac{\sqrt p }{\pi}\frac{i\pi\tau(\chi)}{p}\sum_{a=1}^{p-1}\chi(a)\frac{a}{p}=-\sum_{a=1}^{p-1}(\frac{a}{p})\frac{a}{p}\]
이로부터 소수 \(p\)에 대하여 이차비잉여의 합이 이차잉여의 합보다 크다는 것을 알 수 있다.