3차원 공간의 회전과 SO(3)
개요
- $SO(3)$ 3차원의 회전변환들이 이루는 군으로 리 군(Lie group)의 예
- 정다면체의 분류 문제는 유한회전군 분류 문제에 해당
- 무한소 회전과 리대수 구조
- 유한차원 표현론
3차원 유한회전군
- 3차원의 유한회전군을 분류하는 문제는 정다면체의 분류 문제와 밀접한 관계
- 3차원 유한회전군의 분류 항목 참조
로드리게스 공식
- 3차원에서 단위벡터 \((\omega _x,\omega _y,\omega _z)\) 를 축으로 하여 \(\theta\) 만큼 회전시키는 변환의 행렬표현
\[\left( \begin{array}{ccc} \cos (\theta )-(\cos (\theta )-1) \omega _x^2 & (1-\cos (\theta )) \omega _x \omega _y-\sin (\theta ) \omega _z & \sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z \\ (1-\cos (\theta )) \omega _x \omega _y+\sin (\theta ) \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _y^2 & -\sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z \\ -\sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z & \sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _z^2 \end{array} \right)\]
- 유도 http://www.cs.berkeley.edu/~ug/slide/pipeline/assignments/as5/rotation.html
- x,y,z 축을 중심으로 한 회전변환
- x 축\[\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos (\theta ) & -\sin (\theta ) \\ 0 & \sin (\theta ) & \cos (\theta ) \end{array} \right)=\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)+\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right)\theta+O(\theta^2)\]
- y 축\[\left( \begin{array}{ccc} \cos (\theta ) & 0 & \sin (\theta ) \\ 0 & 1 & 0 \\ -\sin (\theta ) & 0 & \cos (\theta ) \end{array} \right) =\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)+\left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array} \right)\theta+O(\theta^2) \]
- z 축\[\left( \begin{array}{ccc} \cos (\theta ) & -\sin (\theta ) & 0 \\ \sin (\theta ) & \cos (\theta ) & 0 \\ 0 & 0 & 1 \end{array} \right) =\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)+\left( \begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)\theta+O(\theta^2) \]
무한소 회전
- 리대수의 생성원
\[ L_{1}=\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right)\] \[ L_{2}=\left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array} \right)\] \[ L_{3}=\left( \begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)\]
- 교환자 관계식
\[[L_{i},L_{j}]=\epsilon_{ijk}L_{k}\] 풀어 쓰면, \[ [L_1 , L_2 ] = L_3 \\ [L_2 , L_3 ] = L_1 \\ [L_3 , L_1 ] = L_2 \]
함수공간에서의 표현
- $L^2(\mathbb{R}^3)$에서 다음 정준교환자관계식(canonical commutation relation)이 성립한다
\[ [\hat{x}_k , \hat{p}_l ] = \delta_{kl} \label{xp} \] 여기서 $\hat{x}_k$는 $x_k$를 곱하는 연산자, $\hat p_k$는 미분연산자 $\partial_k:=\partial_{x_k}$
- 연산자 $L_j =-\epsilon_{jkl} \hat{x}_k \hat{p}_l$를 생각하자. 즉,
$$ L_1 =\hat{x}_3 \partial_2-\hat{x}_2 \partial_3 \\ L_2 =\hat{x}_1 \partial_3-\hat{x}_3 \partial_1 \\ L_3 =\hat{x}_2 \partial_1-\hat{x}_1 \partial_2 $$
- 이들은 다음의 교환자 관계식을 만족한다
\[[L_i , L_j ] = \epsilon_{ijk} L_k\]
- 리대수의 $L^2(\mathbb{R}^3)$에서의 표현을 얻는다
- 이러한 표현은 각운동량의 양자 이론 에서 중요한 역할을 한다
구면과 SO(3)
- \(S^2=SO(3)/SO(2)\) homogeneous space
- \(L^2(S^2)\)에 작용하는 SO(3)의 표현을 통하여 구면조화함수(spherical harmonics) 이론을 전개할 수 있다
- http://books.google.com/books?id=bNytaQ8eon4C&pg=PA76&dq=sphere+so%283%29+homogeneous+space&hl=ko&ei=e7XZTr78K-KXiAKrwoGUCg&sa=X&oi=book_result&ct=result&resnum=3&ved=0CDgQ6AEwAg#v=onepage&q=sphere%20so%283%29%20homogeneous%20space&f=false
사영표현(projective representation)
- 단위구면의 회전으로부터 입체사영 (stereographic projection) 을 통해 다음과 같은 뫼비우스 변환 을 얻을 수 있다
\[f(z)=\frac{\alpha z+\beta}{-\overline{\beta}z+\overline{\alpha}}\] 여기서 \(\alpha,\beta\in\mathbf{C}, |\alpha|^2 + |\beta|^2 = 1\)
- 더 구체적으로 단위벡터 \((\omega _x,\omega _y,\omega _z)\) 를 축으로 하여 \(\theta\) 만큼 회전시키는 3차원의 회전변환은 다음 뫼비우스 변환에 대응된다
\[f(z)=\frac{z \left(\cos \left(\frac{\theta }{2}\right)+i \omega_z \sin \left(\frac{\theta }{2}\right)\right)+i \omega_x \sin \left(\frac{\theta }{2}\right)-\omega_y \sin \left(\frac{\theta }{2}\right)}{z \left(\omega_y \sin \left(\frac{\theta }{2}\right)+i \omega_x \sin \left(\frac{\theta }{2}\right)\right)-i \omega_z \sin \left(\frac{\theta }{2}\right)+\cos \left(\frac{\theta }{2}\right)}\]
- 벡터공간이 아닌 1차원 복소사영공간에 정의되므로, 사영표현(projective representation) 이다
- 이는 SU(2)의 2차원 표현에서 오는 것으로, 2:1인 함수 $SU(2)\to SO(3)$를 통해 이해할 수 있다
$$ \left( \begin{array}{cc} \cos \left(\frac{\theta }{2}\right)+i \sin \left(\frac{\theta }{2}\right) \omega _z & -\sin \left(\frac{\theta }{2}\right) \omega _y+i \sin \left(\frac{\theta }{2}\right) \omega _x \\ \sin \left(\frac{\theta }{2}\right) \omega _y+i \sin \left(\frac{\theta }{2}\right) \omega _x & \cos \left(\frac{\theta }{2}\right)-i \sin \left(\frac{\theta }{2}\right) \omega _z \end{array} \right) \\ \mapsto \left( \begin{array}{ccc} \cos (\theta )-(\cos (\theta )-1) \omega _x^2 & (1-\cos (\theta )) \omega _x \omega _y-\sin (\theta ) \omega _z & \sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z \\ (1-\cos (\theta )) \omega _x \omega _y+\sin (\theta ) \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _y^2 & -\sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z \\ -\sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z & \sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _z^2 \end{array} \right) $$
역사
메모
- SO(3) 의 표현론
- SO(3,1) 로렌츠 군의 표현론
- 파울리 행렬, 디랙 행렬
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
수학용어번역
- 회전 - 대한수학회 수학용어집
사전 형태의 자료
리뷰, 에세이, 강의노트
관련도서
- Harmonic analysis on commutative spaces
- Groups and Symmetries http://www.springer.com/mathematics/algebra/book/978-0-387-78865-4
관련논문
- “[1508.03101] A Novel Sampling Theorem on the Rotation Group.” http://arxiv.org/abs/1508.03101.