갈루아 이론
이 항목의 스프링노트 원문주소
간단한 소개
- 군론을 통한 체론(field theory)의 이해
- 체확장과 갈루아군의 개념이 필요
- 대수방정식의 해가 가지고 있는 대칭성을 군을 통해 이해하는데서 탄생
- 대수방정식에서 체확장을 구성하고 그 체확장의 성질을 갈루아군을 통해서 이해하는 것
- 갈루아이론을 통하여 일반적인 5차이상의 방정식의 해는 계수로부터 시작하여 근호와 사칙연산을 통해 표현할 수 없음을 증명할 수 있으며, 왜 그것이 불가능한지를 설명할 수 있음
근의 공식
- \(ax^2+bx+c=0\)
\(x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\) - \(ax^3+bx^2+cx+d=0\)
- 3차, 4차 방정식의 근의 공식
- \(ax^5+bx^4+cx^3+dx^2+ex+f=0\)
- \(a,b,c,d,e,f\)
- \(\sqrt{},\sqrt[3]{},\sqrt[4]{}, \sqrt[5]{}, \cdots\)
풀수 있는 방정식
- 정오각형 항목 중 꼭지점의 평면좌표에는 어떻게 방정식 \(z^4+z^3+z^2+z^1+1=0\)을 풀 수 있는지가 설명되어 있음
- 가우스와 정17각형의 작도 항목에는 왜 정17각형이 자와 컴파스로 작도가능한지에 대한 설명이 있음.
- 이를 위하여 \(z^{16}+z^{15}+\cdots+z+1=0\)의 풀이를 반복적인 2차방정식의 풀이로 환원할 수 있음을 보임.
- 즉, 16차 방정식을 2차방정식 네번 푸는 문제로 바꾸는 것.
근의 치환
\(z^4+z^3+z^2+z^1+1=0\)의 네 해는 다음과 같다는 것을 지난 번에 보였다.
\(\alpha_1=\frac{1}{4} \left(-1+\sqrt{5}+i \sqrt{10+2\sqrt{5}}\right)=\zeta\)
\(\alpha_2=\frac{1}{4} \left(-1-\sqrt{5}+i \sqrt{10-2 \sqrt{5}}\right)=\zeta^2\)
\(\alpha_3=\frac{1}{4} \left(-1-\sqrt{5}-i \sqrt{10-2 \sqrt{5}}\right)=\zeta^3\)
\(\alpha_4=\frac{1}{4} \left(-1+\sqrt{5}-i \sqrt{10+2\sqrt{5}}\right)=\zeta^4\)
여기서
먼저 치환이라는 말을 정의하자. 치환이란 우리의 경우에는 네 개의 원소로 구성된 집합 \(\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}\)에 정의되는 전단사함수를 말한다. \(\alpha_1\)을 \(\alpha_3\)으로 보내고, \(\alpha_3\)을 \(\alpha_1\)로 보내고, \(\alpha_2\)와 \(\alpha_4\)는 그대로 주는 치환을 간단히 다음과 같이 쓰자.
\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{pmatrix}\)
방정식의 해의 대칭군은 이렇게 해의 위치를 서로 바꿔주는 치환 중에서, 해들이 만족시키는 방정식의 대수적관계 (더 정확히는 유리계수다항식) 를 보존하는 것들로 정의된다.
가령 위의 네 해는 \(\alpha_1\alpha_4=\alpha_2\alpha_3=1\), \(\alpha_1^2\alpha_3=1\)와 같은 관계들을 만족시킨다. 그러면 대칭군은 어떻게 무엇일까 생각해볼 수 있겠다.
\(\tau=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4\end{pmatrix}\) 는 대칭군의 원소가 될 수 없는데, \(\alpha_1\alpha_4=1\) 임에 반하여, \(\tau(\alpha_1)\tau(\alpha_4)=\alpha_2\alpha_4\neq 1\)이기 때문이다.(\(\alpha_i=\zeta^i\) 임을 기억하자)
\(\alpha_1\alpha_4=\alpha_2\alpha_3=1\)라는 조건으로부터, \(\{1,4\}\)와 \(\{2,3\}\) 이 쌍으로 움직여야 한다는 것을 알 수 있다. 따라서 다음과 같은 치환들만이 대칭군의 원소 후보가 될 수 있다.
\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\) ,\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)
그러나 여기서 \(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4\end{pmatrix}\)와 같은 경우는 대칭군의 원소가 될 수 없는데,
\(\alpha_1^2\alpha_3=1\) 임에 반하여, \(\tau(\alpha_1)^2\tau(\alpha_3)=\alpha_1^2\alpha_2\neq 1\)이기 때문이다.(\(\alpha_i=\zeta^i\) 이므로)
같은 방법을 통해, 다음의 네 가지 치환만이 치환군의 원소가 될 수 있게 된다.
\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\) ,\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)
\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\)는 함수이므로, \(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}^2\)는 함수의 합성으로 이해할 수 있다.
\(\sigma=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\) 로 두면,\(\sigma^2= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\), \(\sigma^3=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{pmatrix}\), \(\sigma^4=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\) 가 되어, 모든 원소가 \(\sigma\)로부터 얻어지게 된다.
즉 친숙한 군 {차렷, 좌향좌, 우향우, 뒤로돌아}와 비교하자면, \(\sigma\)는 좌향좌 또는 우향우와 같은 역할을 방정식의 해에 대하여 하고 있다. 크기가 4인 순환군이 된다.
또다른 예를 하나 더 생각해 보자.
\(x^4 - 10x^2 + 1=0\)의 네 해는 다음과 같이 주어진다.
\(\alpha_1 = \sqrt{2} + \sqrt{3}\)
\(\alpha_2 = \sqrt{2} - \sqrt{3}\)
\(\alpha_3 = -\sqrt{2} + \sqrt{3}\)
\(\alpha_4= -\sqrt{2} - \sqrt{3}\)
이 경우엔 다음의 네 가지 치환만이 대칭군의 원소가 될 수 있게 된다.
\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4\end{pmatrix}\) ,\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)
그런데
\(x=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4\end{pmatrix}\)로 쓰면, \(x^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\)
\(y=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{pmatrix}\)로 쓰면, \(y^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\)
\(z=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)로 쓰면, \(z^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\)
로 모두 제곱하면 항등원이 되어버리므로, 이 군은 절대로 {차렷, 좌향좌, 우향우, 뒤로돌아}와 같은 구조를 가질 수 없음을 알게 된다.
방정식 \(z^4+z^3+z^2+z^1+1=0\)와 \(x^4 - 10x^2 + 1=0\) 는 뭔가 질적으로 다르다는 것을 이 대칭군은 말해주고 있다.
다항식과 갈루아체확장
- (기약)다항식으로부터 얻어지는 해를 모두 추가하여 주어진 체를 확장시킬 수 있음
- 유리수체 \(\mathbb{Q}\)에서 정의된 다항식 \(x^3-2=0\)
- 해는 \(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\) 세 개가 존재
- 유리수체 \(\mathbb{Q}\)에 \(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\)를 집어넣으면 유리수체의 확장 \(K=\mathbb{Q}(\omega, \sqrt[3]{2})\) 를 얻음
- 이 때, 체 \(K\)는 유리수체 \(\mathbb{Q}\)위에 정의된 벡터공간이 되며, 벡터공간으로서의 차원은 \([K : \mathbb{Q}]=6\)이 됨
체확장과 갈루아군
- 체 \(F\)와 그 체확장 \(K\)에 대하여 군 \(\text{Gal}(K/F)\)을 정의할 수 있음
- \(\text{Gal}(K/F)\)는 체\(K\)의 자기동형사상 중에서 체\(F\)를 변화시키지 않는 원소들의 모임
- 자기동형사상이란 \(K\)에서 \(K\)에서 가는 일대일대응으로 사칙연산을 보존하는 함수
- \(\text{Gal}(K/F)\)는 체\(K\)의 자기동형사상 중에서 체\(F\)를 변화시키지 않는 원소들의 모임
- 예) 복소수체 \(\mathbb{C}\) 는 실수체 \(\mathbb{R}\)의 체확장
- 방정식 \(x^2+1=0\) 의 해\(\{i,-i\}\)를 실수체 \(\mathbb{R}\)에 추가하여 실수체의 확장인 복소수체 \(\mathbb{C}\) 를 만듦
- \(\text{Gal}(\mathbb{C}/\mathbb{R})=\{\operatorname{id}, \sigma}\}\) 는 두개의 원소로 구성되어 있으며, 복소수 \(z\)에 대하여 \(\operatorname{id}(z)=z\)과 \(\sigma(z)=\bar{z}\)로 정의됨
- \(\sigma(z)=\bar{z}\) 이므로 실수체 \(\mathbb{R}\)의 원소를 모두 보존함을 알 수 있다
- 방정식 \(x^2+1=0\) 의 해\(\{i,-i\}\)를 실수체 \(\mathbb{R}\)에 추가하여 실수체의 확장인 복소수체 \(\mathbb{C}\) 를 만듦
방정식의 해가 가진 대칭성
- \(\text{Gal}(\mathbb{C}/\mathbb{R})=\{\operatorname{id}, \sigma}\}\)의 경우 \(\sigma\)는 복소수체의 실수체 \(\mathbb{R}\)의 원소를 변화시키지 않음.
- \(\sigma(i)=-i, \sigma(-i)=i\)에서 방정식 \(x^2+1=0\)의 해가 갈루아군의 원소에 의해서 서로 위치를 바꾸는 것을 볼 수 있음
- \(\sigma(i)=-i, \sigma(-i)=i\)에서 방정식 \(x^2+1=0\)의 해가 갈루아군의 원소에 의해서 서로 위치를 바꾸는 것을 볼 수 있음
- 이것을 일반화할 수 있음
(정리)
주어진 체 \(F\)에 대하여, \(F\)의 원소들로 계수가 구성된 기약인 방정식 \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0\)의 해이면, 위에서처럼 해\(\alpha = \alpha_1,\cdots.\alpha_n\)를 모두추가하여 만든 체확장 \(K=F(\alpha_1,\cdots,\alpha_n)\)의 갈루아군 \(\text{Gal}(K/F)\) 의 원소 \(\sigma\)에 대하여 \(\sigma(\alpha)\) 도 같은 방정식의 해가 된다.
(증명)
\(\alpha \)는 방정식 \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0\)의 해이므로, \(a_n {\alpha}^n + a_{n-1} {\alpha}^{n-1} + a_{n-2} {\alpha}^{n-2} + \cdots + a_1 {\alpha} + a_0 = 0\).
\(\sigma\in\text{Gal}(K/F)\)에 대하여 \(\sigma(a_n {\alpha}^n + a_{n-1} {\alpha}^{n-1} + a_{n-2} {\alpha}^{n-2} + \cdots + a_1 {\alpha} + a_0)= \sigma(0)=0\) 이다.
그런데 \(\sigma\in\text{Gal}(K/F)\) 는 사칙연산을 보존하며 체 \(F\)의 원소들을 변화시키지 않으므로, \(\sigma(a_n {\alpha}^n + a_{n-1} {\alpha}^{n-1} + a_{n-2} {\alpha}^{n-2} + \cdots + a_1 {\alpha} + a_0)=a_n \sigma(\alpha)^n + a_{n-1} \sigma(\alpha)^{n-1} + a_{n-2} \sigma(\alpha)^{n-2} + \cdots + a_1 \sigma(\alpha) + a_0 = 0\)
을 만족시킨다.
따라서 \(\sigma(\alpha)\)도 방정식 \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0\)의 해가 된다. (증명끝)
예
- 위에서 본 유리수체\(\mathbb{Q}\)의 확장 \(K=\mathbb{Q}(\omega, \sqrt[3]{2})\)
- 위의 정리에 따라 갈루아군의 원소들은 \(\sqrt[3]{2}\)와 \(\omega\)를 어디로 보내는가에 따라 결정
- \(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\) 는 유리계수방정식 \(x^3-2=0\)의 해이고, \(\omega\)와 \(\omega^2\)는 유리계수방정식 \(x^2+x+1=0\)의 해이기 때문
\(\operatorname{id}\) | \(\tau\) | \(\tau^2\) | \(\sigma\) | \(\sigma\tau\) | \(\sigma\tau^2\) | |
\(\sqrt[3]{2}\) | \(\sqrt[3]{2}\) | \(\omega\sqrt[3]{2}\) | \(\omega^2\sqrt[3]{2}\) | \(\sqrt[3]{2}\) | \(\omega^2\sqrt[3]{2}\) | \(\omega\sqrt[3]{2}\) |
\(\omega\) | \(\omega\) | \(\omega\) | \(\omega\) | \(\omega^2\) | \(\omega^2\) | \(\omega^2\) |
- \(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\) 가 같이 움직이고,\(\omega\)와 \(\omega^2\)가 같이 움직임을 볼 수 있음
- \(\text{Gal}(K/\mathbb{Q})=\{\operatorname{id}, \tau, \tau^2,\sigma, \sigma\tau, \sigma\tau^2\}\)이 됨
- 한편 원소의 개수가 6인 군은 두 개가 존재
- 크기가 6인 순환군
- 3개 원소로 이루어진 집합의 대칭군 (symmetric group)은 \(3!=6\) 개의 원소를 가짐
- 크기가 6인 순환군
- \(\text{Gal}(K/\mathbb{Q})=\{\operatorname{id}, \tau, \tau^2,\sigma, \sigma\tau, \sigma\tau^2\}\) 는 이 둘 중 어느 것일까 물을 수 있다
- 표를 이용하면 \(\sigma\tau^2=\tau\sigma\) 임을 알 수 있음
- \(\tau\sigma(\sqrt[3]2)=\tau(\sqrt[3]2)=\omega\sqrt[3]{2}\)이고, \(\tau\sigma(\omega)=\tau(\omega^2)=\omega^2\) 이므로 \(\sigma\tau^2=\tau\sigma\)
- 따라서 \(\sigma\tau\neq\tau\sigma\) 이고, 이 군은 교환법칙이 성립하지 않음
- 그러므로 \(\text{Gal}(K/\mathbb{Q})\simeq S_3\)
- 표를 이용하면 \(\sigma\tau^2=\tau\sigma\) 임을 알 수 있음
- 요약
- 방정식 \(x^3-2=0\) 으로부터 체확장 \(K=\mathbb{Q}(\omega, \sqrt[3]{2})\)을 얻었고, \(\text{Gal}(K/\mathbb{Q})=\{\operatorname{id}, \tau, \tau^2,\sigma, \sigma\tau, \sigma\tau^2\}\) 를 얻었음
- \(\text{Gal}(K/\mathbb{Q})=\{\operatorname{id}, \tau, \tau^2,\sigma, \sigma\tau, \sigma\tau^2\}\) 의 원소들이 \(\sqrt[3]{2}\)와 \(\omega\) 를 어디로 보내는지를 보면, 각각의 원소를 알 수 있음.
갈루아 체확장
- transitivity와 fixed point free action 또는 \(\text{Gal}(K/F)=|K:F|\)
- 유한체
- 원분체 (cyclotomic field) 와 원분다항식(cyclotomic polynomial)
5차방정식에의 응용
\(f(x)=2x^5-5x^4+5\) is the irreducible polynomial of degree 5 over the rationals.
It has two complex and 3 real roots.
This implies the Galois group is \(S_5\).
재미있는 사실
역사
메모
관련된 항목들[[리만곡면과 갈루아이론|]]
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/galois_theory
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Galois Theory for Beginners
- John Stillwell, The American Mathematical Monthly, Vol. 101, No. 1 (Jan., 1994), pp. 22-27
- The Evolution of Group Theory: A Brief Survey
- Israel Kleiner, Mathematics Magazine, Vol. 59, No. 4 (Oct., 1986), pp. 195-215
- Galois and Group Theory
- Garrett Birkhoff, Osiris, Vol. 3, (1937), pp. 260-268
교양도서
- 프랑스 수학자 갈루아 1, 프랑스 수학자 갈루아 2
- 톰 펫시니스 저/김연수 역 | 이끌리오
- The Equation That Couldn't Be Solved: How Mathematical Genius Discovered the Language of Symmetry
- Mario Livio
관련도서 및 추천도서
- Galois Theory
- Harold M. Edwards (1984), Springer-Verlag
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)