조화수열과 조화급수

수학노트
Pythagoras0 (토론 | 기여)님의 2021년 2월 17일 (수) 04:59 판
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기


개요

\[\gamma=0.577215664901532860606512090\cdots\]

근사 공식

  • 오일러-맥클로린 공식 을 통해 다음을 얻는다 \[H_{n}=\sum_{k=1}^{n}\frac{1}{k}\sim \log n +\gamma+\frac{1}{2n}-\sum_{s=1}^{\infty}\frac{B_{2s}}{(2s)n^{2s}}\]
  • 다음이 성립한다 \[H_{n}= \log n +\gamma+ O(1/n)\]

성질

\(H_{n-1}=H_n-\frac{1}{n}\)

\(H_ {n-1}^2=(H_n-\frac{1}{n})^2=H_n^2+\frac{1}{n^2}-\frac{2H_n}{n}\)



생성함수

\(\sum_{n=1}^\infty H_nz^n = \frac {-\ln(1-z)}{1-z}\)



생성함수의 응용

\(\sum_{n=1}^\infty \frac{H_n}{n+1}z^{n+1} =\frac{1}{2}\log^2(1-z)\)

\(\sum_{n=1}^\infty \frac{H_n}{n}z^n =\operatorname{Li}_ 2(z)+\frac{1}{2}\log^2(1-z)\)


\(z=e^{it}\), \(0 \leq t \leq \pi\) 에서

위 식의 실수부를 취하면, 각각 다음 식을 얻는다.

\(\sum_{n=1}^\infty \frac{H_n}{n+1}\sin (n+1)t=\frac{1}{2}(t-\pi)\log(2\sin\frac{t}{2})\)

\(\sum_{n=1}^\infty \frac{H_n}{n}\sin nt=\operatorname{Cl}_ 2(t)+\frac{1}{2}(t-\pi)\log(2\sin\frac{t}{2})\)

로바체프스키와 클라우센 함수





조화수열과 급수

\(\sum_{n=1}^{\infty}\frac{H_n^2}{(n+1)^2}=\frac{11\pi^4}{360}\)

\(\sum_{n=1}^{\infty}\frac{H_n^2}{n^2}=\frac{17\pi^4}{360}\)

\(\sum_{n=1}^{\infty}\frac{H_n}{n^3}=\frac{\pi^4}{72}\)



역사



메모

http://sos440.tistory.com/202

http://sos440.tistory.com/200


관련된 항목들




사전 형태의 자료


관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'harmonic'}, {'LEMMA': 'series'}]