미적분학의 기본정리

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 1일 (목) 12:49 판 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소==    
개요==
  • 적분과 미분의 관계
  • 미적분학의 기본정리는 다변수 미적분학에서 선적분의 기본정리, 그린정리, 스토크스 정리, 발산 정리 등으로 확장
  • 미분형식에 대한 스토크스 정리로 확장됨
     
미적분학의 기본정리== \(F'\!(x) =\frac {d}{dx} F(x) = f(x)\) 이면 \(\int_a^b f(t)dt = F(b) - F(a)\)    
선적분의 기본정리==
  • 1-form 과 0-form
    \(\int_{C}\nabla\phi\cdot d\mathbf{r}=\phi(P_1)-\phi(P_0)\)
    or
    \(\int_{C}\frac{d\phi}{dx}dx+\frac{d\phi}{dy}dy=\phi(P_1)-\phi(P_0)\)
     
    여기서 \(C\)는 \(P_0\)를 시작점, \(P_1\)을 끝점으로 갖는 곡선
   
곡면에 대한 스토크스의 정리==
  • 2-form 과 1-form
    \(\iint_S\ (\nabla\times\mathbf{F})\cdot\,d\mathbf{S}=\int_{\partial S}\mathbf F\cdot d\mathbf{r}\)
   
그린 정리==
  • 스토크스 정리의 특수한 경우
    \(\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\, {d}A=\oint_{\partial D} (P\, {d}x + Q\, {d}y)\)
  • 그린 정리
   
가우스의 발산 정리==
  • 3-form과 2-form
    \(\iiint_V\ \nabla\cdot\mathbf{F}\,dV=\iint_{\partial V}\mathbf F\cdot\mathbf n\,{d}S \)
    여기서
    \(\operatorname{div}\,\mathbf{F} = \nabla\cdot\mathbf{F} =\frac{\partial F_x}{\partial x} +\frac{\partial F_y}{\partial y} +\frac{\partial F_z}{\partial z }\)
  • 발산 정리(divergence theorem)
     
가장 일반적인 형태의 스토크스 정리==   [1]
역사==    

메모

 

 

 

상위 주제==    

하위페이지

 

 

 

 

관련된 항목들==    
관련도서 및 추천도서==    
수학용어번역==    
사전형태의 참고자료==      

관련논문