연분수
Pythagoras0 (토론 | 기여)님의 2014년 11월 23일 (일) 05:55 판
개요
\(a_0+\frac{b_1}{a_1+\frac{b_2}{a_2+\frac{b_3}{a_3+\frac{b_4}{a_4+\frac{b_5}{a_5+\frac{b_6}{a_6+\frac{b_7}{a_7+\frac{b_8}{a_8+\frac{b_9}{a_9+\frac{b_{10}}{a_{10}}}}}}}}}}}\)
예
- 루트 2의 연분수 전개는 $[1;2,2,2,\cdots]$, 즉 다음과 같이 주어진다
\[\sqrt{2}=1+\cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \ddots}}}\]
- convergents $\{c_n\}_{n\geq 0}$는 다음과 같이 주어진다
\[1,\frac{3}{2},\frac{7}{5},\frac{17}{12},\frac{41}{29},\frac{99}{70},\frac{239}{169},\frac{577}{408},\frac{1393}{985},\frac{3363}{2378},\cdots \]
- $c_n$의 분자와 분모를 다음과 같이 두자
- \(p_n\) 1,3,7,17,41,99,239,577,1393,3363,8119
- \(q_n\) 1,2,5,12,29,70,169,408,985,2378
- 다음이 성립한다
- \(p_n^2-2 q_n^2=(-1)^{n+1}\)
- \( \begin{vmatrix} p_{n} & p_{n+1} \\ q_{n} & q_{n+1} \end{vmatrix}=(-1)^{n+1} \)
- \(p_{n+1}=2p_n+p_{n-1}, p_0=1, p_1=3\)
- \(q_{n+1}=2q_n+q_{n-1}, q_0=1, q_1=2\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스