Ζ(2)의 계산, 오일러와 바젤 문제 (완전제곱수의 역수들의 합)
이 항목의 스프링노트 원문주소
개요
- 제타 함수의 정수에서의 값을 구하는 것은 수학적으로 흥미로운 문제
- 다음은 오일러가 처음으로 계산해 내어 매우 유명한 결과로 수학의 아름다운 정리 중 하나로 꼽힘.
\(\zeta(2)=\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}=\frac{(2\pi)^2}{24}\)
\(\frac{\pi^2}{6}=1.6449340668482264365\cdots\)
푸리에 급수를 이용한 증명
오일러의 방법
- 사인함수에 대하여 근과계수의 관계를 적용
오일러-맥클로린 공식을 활용한 오일러의 수치계산
- 오일러-맥클로린 공식 을 활용하여, 위의 값을 확인해보자.
\(\sum_{i=0}^{n-1} f(i) = \sum_{k=0}^p\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(0)\right)+R\)
\(f(x)=\frac{1}{x^2}\)에 대해 적용함.
\(\int f(x)\,dx=-\frac{1}{x}\), \(f(x)=\frac{1}{x^2}\), \(f'(x)=-\frac{2}{x^3}\), \(f^{(2)}(x)=\frac{6}{x^4}\), \(f^{(3)}(x)=-\frac{24}{x^5}\), \(f^{(k-1)}(x)=(-1)^{k-1}\frac{k!}{x^{k+1}}\)
\(\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(1)\right) =(-1)^{k-1}B_k(\frac{1}{n^{k+1}}-1) \)
\(\sum_{k=1}^{n-1} \frac{1}{k^2} = -(\frac{1}{n}-1) -\frac{1}{2}(\frac{1}{n^2}-1)-\frac{1}{6}(\frac{1}{n^3}-1)+\frac{1}{30}(\frac{1}{n^5}-1)-\frac{1}{42}(\frac{1}{n^7}-1)+\frac{1}{30}(\frac{1}{n^9}-1) \cdots\)
여기서 오일러는 \(n\to\infty\) 일때 다음식이 참이라고 가정(사실은 발산함)
\(1+\frac{1}{2}+\frac{1}{6}-\frac{1}{30}+\frac{1}{42}-\frac{1}{30}+\cdots=\frac{\pi^2}{6}\)
그 다음, \(n=10\) 인 경우에 다음식을 계산하여, 값을 비교함.
\(\sum_{k=1}^{n-1} \frac{1}{k^2}+\frac{1}{n}+ \frac{1}{2n^2}+\frac{1}{6n^3}-\frac{1}{30n^5}+\frac{1}{42n^7}-\frac{1}{30n^9}\)
\(1.6449340668474930714\cdots=1.5397677311665406904\cdots + 0.10516633568095238095\cdots\)
\(\frac{\pi^2}{6}=1.6449340668482264365\cdots\)
재미있는 사실
관련된 다른 주제들