클리포드 대수와 스피너

수학노트
둘러보기로 가기 검색하러 가기

개요



클리포드 대수

  • $K$ : 표수가 2가 아닌 체
  • $V$ : $K$위에 정의된 유한차원 벡터공간
  • 이차형식이 주어진 벡터공간 \((V,Q)\)
    • $Q$ : $V$에 정의된 비퇴화된 이차형식
    • 대칭겹선형 형식 \(\langle x,y \rangle\)
  • 클리포드 대수: $V$의 원소들로 생성되는 결합대수(associative algebra)로 다음 관계를 만족시킨다
    • \(v^2=Q(v)\)
    • \(vw+wv=2\langle w,v\rangle\)
  • 외대수(exterior algebra,그라스만 대수)의 양자화로 이해하기도 한다



스피너

  • 클리포드 대수의 벡터공간 \(W\) 에서의 표현(representation)을 생각하자
  • W의 원소를 스피너라 부른다



파울리 스피너

  • 실수체 위에 정의된 8차원 클리포드 대수
  • 파울리 행렬 로부터 구성할 수 있다
  • 3차원 유클리드 공간 \(E_{3}\)의 클리포드 대수 \(C(E_{3})\)와 동형이다
  • SO(3)의 사영표현을 얻을 수 있다



디랙 스피너

  • 16차원 실대수
  • 4차원 민코프스키 공간 \(E_{3,1}\)의 클리포드 대수 \(C(E_{3,1})\) 와 동형
  • \(\gamma_{\mu}^2=\epsilon_{\mu}\), \(\gamma_{\mu}\gamma_{\nu}+\gamma_{\nu}\gamma_{\mu}=0\), \(\epsilon_{0}=1, \epsilon_{i}=-1\)
  • 4차원 표현이 존재한다
  • 로렌츠 군의 사영표현을 얻을 수 있다
  • 로렌츠 군의 universal covering \(H=SL(2,\mathbb{C})\) 의 표현
  • 디랙 행렬


디랙의 동기

  • 디랙은 양자역학의 상대론적 파동방정식(디랙 방정식)을 찾는 과정에서 디랙 스피너를 도입하였다
  • 여기서 라플라시안(Laplacian) 연산자의 제곱근을 찾는 문제를 생각하게 된다

$$ \sqrt{\frac{\partial^2f}{\partial x_1^2} + \cdots+\frac{\partial^2 f}{\partial x_n^2}}=? $$

  • 이 문제는 이차형식 $Q$이 선형형식의 완전제곱으로 쓰여질 수 있다는 클리포드 대수의 일반적인 성질과 관련이 있다
  • $n$차원 벡터공간 $V$의 기저를 $e_1,\cdots, e_n$라 두면, 클리포드 대수에서 다음 등식이 성립한다

$$ Q(a_1e_1+\cdots+a_ne_n)=(a_1e_1+\cdots+a_ne_n)^2 $$

  • 디랙 스피너를 도입하면 라플라시안의 제곱근에 해당하는 대상을 찾을 수 있게 된다


역사



메모



관련된 항목들



사전 형태의 자료


리뷰, 에세이, 강의노트

  • Chappell, James M., Azhar Iqbal, John G. Hartnett, and Derek Abbott. “The Vector Algebra War: A Historical Perspective.” arXiv:1509.00501 [physics], August 29, 2015. http://arxiv.org/abs/1509.00501.
  • Sobczyk, Garret. “Part II: Spacetime Algebra of Dirac Spinors.” arXiv:1507.06609 [math-Ph, Physics:quant-Ph], July 21, 2015. http://arxiv.org/abs/1507.06609.
  • ———. “Part I: Vector Analysis of Spinors.” arXiv:1507.06608 [math-Ph, Physics:quant-Ph], July 21, 2015. http://arxiv.org/abs/1507.06608.
  • Peter Woit의 강의 노트
  • Lachièze-Rey, Marc. 2009. “Spin and Clifford Algebras, an Introduction”. Advances in Applied Clifford Algebras 19 (3-4): 687-720. doi:10.1007/s00006-009-0187-y.
  • http://www.math.ucla.edu/~vsv/papers/ch5.pdf
  • Frescura, F. A. M. 1981. “Geometric interpretation of the Pauli spinor”. American Journal of Physics 49: 152. doi:10.1119/1.12548.
  • Vivarelli, Maria Dina. 1984. “Development of spinor descriptions of rotational mechanics from Euler’s rigid body displacement theorem”. Celestial Mechanics 32 (3월): 193-207. doi:10.1007/BF01236599.
  • Coquereaux, Robert. 2005. “Clifford algebras, spinors and fundamental interactions : Twenty Years After”. arXiv:math-ph/0509040 (9월 19). http://arxiv.org/abs/math-ph/0509040.