1차원 가우시안 적분

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 9월 30일 (목) 13:22 판
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

개요
  • 가우시안 적분(Gaussian integral)
    \(\int_{-\infty}^\infty e^{-x^2}\,dx = \sqrt{\pi}\)
    \(\int_{-\infty}^{\infty}e^{-\frac{x^2}{2}}dx=\sqrt{2\pi}\)

 

 

극좌표 치환을 이용한 계산
  • 극좌표계 항목을 참조
    \(x = r \cos \theta\), \(y = r \sin \theta\)

 \(\int\int_{\mathbb{R}^2}e^{-x^2-y^2}dA\)

\(\int\int_{\mathbb{R}^2}e^{-x^2-y^2}dA= \int_{0}^{2\pi}\int_{0}^{\infty}e^{-r^2}rdrd\theta=2\pi\int_{0}^{\infty}re^{-r^2}dr=2\pi[-\frac{1}{2}e^{r^2}]_{0}^{\infty}=\pi\)

 

극좌표 치환이 사용되었다.

 

\(\int\int_{\mathbb{R}^2}e^{-x^2-y^2}dA= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-x^2-y^2}dxdy=(\int_{-\infty}^{\infty}e^{-x^2}dx)(\int_{-\infty}^{\infty} e^{-y^2}dy)=(\int_{-\infty}^{\infty}e^{-x^2}dx)^2\)

 

\(\int_{-\infty}^{\infty}e^{-x^2}dx =\sqrt{\pi}\)

\(x=\frac{t}{\sqrt{2}}\) 로 치환하면,  \(\int_{-\infty}^{\infty}e^{-\frac{x^2}{2}}dx=\sqrt{2\pi}\) 을 얻는다

 

 

감마함수와의 관계
  • 감마함수를 이용하여 가우시안 적분을 표현할 수 있다
    \(\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}\)
    \(2\int_{0}^{\infty}e^{-x^2}dx= \int_{-\infty}^{\infty}e^{-x^2}dx =\sqrt{\pi}\)
    \(x=\sqrt{t}\)로 치환하면,
    \(2\int_{0}^{\infty}e^{-x^2}dx= \int_0^\infty e^{-t} \ t^{-1/2} dt \, = \, \Gamma\left(\frac{1}{2}\right)\)
    를 얻는다. 따라서
    \(\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}\)
  • 더 일반적으로, 다음이 성립한다. 
    \(\int_{0}^{\infty}x^{n}e^{-x^2}dx=\frac{1}{2}\Gamma(\frac{n+1}{2})\)
    \(\int_{0}^{\infty}x^{n}e^{-x^m}dx=\frac{1}{m}\Gamma(\frac{n+1}{m})\)

 

 

역사

 

 

메모

함수 \(e^{-x^2}\) 는 정규분포함수에도 등장한다.

평균이 \(\mu\) 이고 분산이 \(\sigma^2\) 인 정규분포를 따르는 확률변수의 확률밀도함수는 \(f(x) = \frac{1}{\sqrt{2\pi} \sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\) 와 같이 쓸 수 있다.

계수에서 등장하는 \((2\pi)^{-\frac{1}{2}}\) 는, 확률밀도함수의 정규화(전사건의 확률이 1이 되도록 해 주는 것)를 위한 것이다. 즉, \(e^{- \frac{x^2}{2\sigma^2}}\) 를 실수 전체에서 적분하면 \(\sqrt{2\pi}\sigma\) 가 된다.

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그