다변수미적분학

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 12월 28일 (월) 02:11 판
둘러보기로 가기 검색하러 가기

개요

  • 다변수 함수의 미분과 적분을 공부함.
  • 라그랑지 승수 법칙과 헤세판정법을 통해, 함수의 최대값과 최소값을 구하는 기술을 배움.
  • '미적분학의 기본정리'의 다변수 확장 버전인 '스토크스 정리' 를 공부함.



선수 과목 또는 알고 있으면 좋은 것들




다루는 대상

  • 곡선, 곡면, n차원 공간
  • 벡터장


중요한 개념 및 정리

  • 편미분
  • 다변수 함수의 테일러 전개
  • 미분연산자
    • grad
    • div
    • curl
  • 내적과 외적
  • 다변수 함수의 임계점
  • 라그랑지 승수 법칙(Lagrange multiplier)
  • 헤세판정법
    • 모스 보조정리 (Morse lemma)
    • 판별식 판별법(Determinant test)
  • 다중적분
    • 푸비니의 정리 (Fubini's theorem)
  • 좌표변환
    • 자코비안과 행렬식
    • 극좌표계
    • 구면좌표계
    • 원통좌표계
    • 치환적분법
  • 그린 정리
  • 발산 정리
  • 스토크스 정리
    • 미분형식으로 표현되는 스토크스 정리의 특별한 경우로 생각할 수 있음.




유명한 정리 혹은 재미있는 문제


다른 과목과의 관련성



관련된 대학원 과목 또는 더 공부하면 좋은 것들

  • 미분형식 (differential forms)
    • 스토크스 정리를 고차원으로 일반화하기 위해서는, 미분다양체와 미분형식의 언어가 필요함
  • 미분다양체론


표준적인 교과서

추천도서 및 보조교재


사전 형태의 자료


관련논문과 에세이