정수론에서의 상호법칙 (reciprocity laws)
개요
- 정수계수 다항식 \(f(x)\)가 주어져 있을 때, 소수 \(p\)에 대하여 \(f(x) \pmod p\) 를 생각한다.
- 이 때, 어느 소수 \(p\)에 대해서 다항식이 일차식들로 쪼개지는가? 더 일반적으로 \(p\)가 주어진다면 어떻게 분해되는지 알 수 있는가?
- 이러한 질문이 상호법칙 (reciprocity laws)의 가장 기본이 되는 질문들
'상호법칙'이란
- 이차잉여의 상호법칙 에서 가져옴
- 문제 : 정수계수 다항식 \(f(x)\)를 \(\pmod p\)로 생각할 때 어떻게 인수분해되는가
- 인수분해되는 방식에 따라서 소수 \(p\)가 만족시키는 조건을 기술하는 것이 '상호법칙'
- \(f(x)=x^2-5\)라면, 홀수인 소수 \(p\)에 대하여 이차잉여의 상호법칙을 사용하여 다음을 확인할 수 있다
- \(p\equiv 1,4 \pmod 5\) 인 경우, \(f (x) \pmod p\) 는 두 개의 일차식으로 분해됨
- \(p\equiv 2,3 \pmod 5\) 인 경우, \(f (x) \pmod p\) 는 분해되지 않음
이차잉여의 상호법칙
- 정수 계수 이차 다항식 \(x^2-a\) 의 문제
- \(x^2-a\pmod p\) 가 \(p\) 에 따라 어떻게 분해되는지 혹은 몇 개의 근을 갖는지에 대한 질문
- 자세한 사항은 이차잉여의 상호법칙 에서 다루기로 함.
- 이차수체
원분다항식의 상호법칙
- 상호법칙의 질문에 따라 원분다항식(cyclotomic polynomial)의 분해에 대한 문제를 생각해 볼 수 있음.
- 원분다항식 \(\Phi_n(x) \pmod p\) 가 어떤 소수 \(p\) 에 대해 어떻게 분해되는가의 문제
- 정리
\(p\in (\mathbb{Z}/n\mathbb{Z})^\times\)의 order가 \(r\)이라 하자. 즉 \(r\)이 \(p^r=1\pmod n\) 을 만족시키는 가장 작은 자연수라 하자. 그러면 \(\Phi_n(x) \pmod p\) 는 차수가 \(r\)인 기약다항식들의 곱으로 표현된다. 즉 \(\Phi_n(x) \pmod p\)의 분해는, \(p\pmod n\)에 의해 결정된다.
- 증명
원분다항식을 기약다항식으로 분해하여 \(\Phi_n(x)=f_ 1f_ 2\cdots f_l \pmod p\) 를 얻고, \(f_ 1\)의 차수가 \(s\)라고 하자.
\(\mathbb{F}_p\)의 적당한 체확장에서 기약다항식 \(f_ 1\)의 근 \(\alpha\) 를 찾자. 그러면, \(\mathbb F_p[x]/(f_ 1)\simeq \mathbb F_p (\alpha)\simeq \mathbb F_{p^s}\) 을 얻는다.
\(f_ 1(\alpha)=0\) 이므로, \(\Phi_n(\alpha)=0\)이고, 따라서 \(\alpha^n=1\) 이다.
유한체 \(\mathbb F_{p^s}\) 는 방정식 \(x^{p^s}-x=x(x^{p^s-1}-1)\) 의 근으로 구성되므로, \(n|{p^s-1}\) 을 얻는다. 따라서 \(p^s=1\pmod n\)이고, \(s\geq r\)을 얻는다.
이제 \(s\leq r\) 임을 보이자. \(r\)의 정의로부터, \(n | p^r-1\) 임을 안다.
\(\alpha^n=1\)이므로, \(\alpha^{p^r-1}=1\) 즉 \(\alpha^{p^r}=\alpha\) 가 된다. 이는 \(\alpha\in \mathbb F_{p^r}\) 임을 의미한다.
\(\mathbb F_p[x]/(f_ 1)\simeq \mathbb F_p (\alpha)\simeq \mathbb F_{p^s}\) 이므로, \(s\leq r\) 이다.
따라서 \(r=s\) 임이 증명된다. ■
- 따름정리
\(n | (p-1)\) \(\iff\) \(\Phi_n(x) \pmod p\)는 일차식들로 분해된다
- 증명
위의 정리에서 \(r=1\)인 경우에 해당한다. ■
다른 예
- \(x^3-x+1 \pmod p\) 가 일차식으로 분해 \(\iff\) \(x^2+27y^2=p\) 의 정수해가 존재
- 다항식 x^3-x+1 항목 참조
- \(x^3-2 \pmod p\)가 일차식으로 분해될 조건은 \(x^2+27y^2=p\)의 정수해와 관련
- 이차형식 x^2+27y^2 항목 참조
디리클레 정리와 원분다항식의 상호법칙
- \(n | (p-1)\) 이면, \(\Phi_n(x) \pmod p\)는 일차식들로 분해되는데, 이 사실은 \(\text{Frob}_p\) 가 체확장 \(\mathbb Q \subset \mathbb Q(\zeta_n)\)의 갈루아군의 항등원임을 의미한다.
- 프로베니우스의 밀도 정리에 의하면, \(\text{Frob}_p\)가 항등원이 되는 소수 p는 무한히 많으므로, 디리클레 정리의 특수한 경우 \(p\equiv 1 \pmod n\) 가 증명된다.
- 등차수열의 소수분포에 관한 디리클레 정리 항목도 참조.
프로베니우스의 밀도 정리
체보타레프 밀도 정리
- 일반적인 수체
원분체의 arithmetic
- Kronecker-Weber theorem and Ray class field
- 이차잉여의 상호법칙
- 디리클레 정리
- 가우스 합
메모
관련된 항목들
사전 형태의 자료
리뷰, 에세이, 강의노트
- Dalawat, Chandan Singh. “Classical Reciprocity Laws.” arXiv:1406.1857 [math], June 6, 2014. http://arxiv.org/abs/1406.1857.
- R.Taylor, Reciprocity laws and density theorems
- R.Taylor, Reciprocity laws and density theorems, 강연 슬라이드
- B. F. Wyman, What is a Reciprocity Law? The American Mathematical Monthly, Vol. 79, No. 6 (Jun. - Jul., 1972), pp. 571-586
- Emma Lehmer Rational Reciprocity Laws, The American Mathematical Monthly, Vol. 85, No. 6 (Jun. - Jul., 1978), pp. 467-472
- B. Sury Frobenius and his Density theorem for primes, Springer India, Volume 8, Number 12 / 2003년 12월
- Daniel Berend; Yuri Bilu, Polynomials with roots modulo every integer Journal: Proc. Amer. Math. Soc. 124 (1996), 1663-1671.
메타데이터
위키데이터
- ID : Q5446972
Spacy 패턴 목록
- [{'LOWER': 'field'}, {'LEMMA': 'arithmetic'}]